Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Asunto principal
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
Brain ; 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38533783

RESUMEN

Exposure to repetitive head impacts (RHIs) in contact sports is associated with neurodegenerative disorders including chronic traumatic encephalopathy (CTE) which currently can be diagnosed only at postmortem. American football players are at higher risk of developing CTE given their exposure to RHIs. One promising approach for diagnosing CTE in vivo is to explore known neuropathological abnormalities at postmortem in living individuals using structural magnetic resonance imaging (MRI). MRI brain morphometry was evaluated in 170 male former American football players ages 45-74 years (n = 114 professional; n = 56 college) and 54 same-age unexposed asymptomatic male controls (n = 58 age range 45-74). Cortical thickness and volume of regions of interest were selected based on established CTE pathology findings and were assessed using FreeSurfer. Group differences and interactions with age and exposure factors were evaluated using a generalized least squares model. A separate logistic regression and independent multinomial model were performed to predict each Traumatic Encephalopathy Syndrome (TES) diagnosis core clinical features and provisional level of certainty for CTE pathology using brain regions of interest. Former college and professional American football players (combined) showed significant cortical thickness and/or volume reductions compared to unexposed asymptomatic controls in the hippocampus amygdala entorhinal cortex parahippocampal gyrus insula temporal pole and superior frontal gyrus. Post-hoc analyses identified group-level differences between former professional players and unexposed asymptomatic controls in the hippocampus amygdala entorhinal cortex parahippocampal gyrus insula and superior frontal gyrus. Former college players showed significant volume reductions in the hippocampus amygdala and superior frontal gyrus compared to the unexposed asymptomatic controls. We did not observe age-by-group interactions for brain morphometric measures. Interactions between morphometry and exposure measures were limited to a single significant positive association between the age of first exposure to organized tackle football and right insular volume. We found no significant relationship between brain morphometric measures and the TES diagnosis core clinical features and provisional level of certainty for CTE pathology outcomes. These findings suggest that MRI morphometrics detects abnormalities in individuals with a history of RHI exposure that resemble the anatomic distribution of pathological findings from postmortem CTE studies. The lack of findings associating MRI measures with exposure metrics (except for one significant relationship) or TES diagnosis and core clinical features suggests that brain morphometry must be complemented by other types of measures to characterize individuals with RHIs.

2.
Mol Psychiatry ; 27(4): 2052-2060, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35145230

RESUMEN

Brain morphology differs markedly between individuals with schizophrenia, but the cellular and genetic basis of this heterogeneity is poorly understood. Here, we sought to determine whether cortical thickness (CTh) heterogeneity in schizophrenia relates to interregional variation in distinct neural cell types, as inferred from established gene expression data and person-specific genomic variation. This study comprised 1849 participants in total, including a discovery (140 cases and 1267 controls) and a validation cohort (335 cases and 185 controls). To characterize CTh heterogeneity, normative ranges were established for 34 cortical regions and the extent of deviation from these ranges was measured for each individual with schizophrenia. CTh deviations were explained by interregional gene expression levels of five out of seven neural cell types examined: (1) astrocytes; (2) endothelial cells; (3) oligodendrocyte progenitor cells (OPCs); (4) excitatory neurons; and (5) inhibitory neurons. Regional alignment between CTh alterations with cell type transcriptional maps distinguished broad patient subtypes, which were validated against genomic data drawn from the same individuals. In a predominantly neuronal/endothelial subtype (22% of patients), CTh deviations covaried with polygenic risk for schizophrenia (sczPRS) calculated specifically from genes marking neuronal and endothelial cells (r = -0.40, p = 0.010). Whereas, in a predominantly glia/OPC subtype (43% of patients), CTh deviations covaried with sczPRS calculated from glia and OPC-linked genes (r = -0.30, p = 0.028). This multi-scale analysis of genomic, transcriptomic, and brain phenotypic data may indicate that CTh heterogeneity in schizophrenia relates to inter-individual variation in cell-type specific functions. Decomposing heterogeneity in relation to cortical cell types enables prioritization of schizophrenia subsets for future disease modeling efforts.


Asunto(s)
Esquizofrenia , Encéfalo , Corteza Cerebral , Células Endoteliales , Humanos , Imagen por Resonancia Magnética , Herencia Multifactorial , Esquizofrenia/genética
3.
Neurol Clin Pract ; 14(5): e200324, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39161749

RESUMEN

Background and Objectives: Exposure to repetitive head impacts (RHI) is linked to the development of chronic traumatic encephalopathy (CTE), which can only be diagnosed at post-mortem. The presence of a cavum septum pellucidum (CSP) is a common finding in post-mortem studies of confirmed CTE and in neuroimaging studies of individuals exposed to RHI. This study examines CSP in living former American football players, investigating its association with RHI exposure, traumatic encephalopathy syndrome (TES) diagnosis, and provisional levels of certainty for CTE pathology. Methods: Data from the DIAGNOSE CTE Research Project were used to compare the presence and ratio of CSP in former American football players (n = 175), consisting of former college (n = 58) and former professional players (n = 117), and asymptomatic unexposed controls without RHI exposure (n = 55). We further evaluated potential associations between CSP measures and cumulative head impact index (CHII) measures (frequency, linear acceleration, and rotational force), a TES diagnosis (yes/no), and a provisional level of certainty for CTE pathology (suggestive, possible, and probable). Results: Former American football players exhibited a higher CSP presence and ratio than unexposed asymptomatic controls. Among player subgroups, professional players showed a greater CSP ratio than former college players and unexposed asymptomatic controls. Among all football players, CHII rotational forces correlated with an increased CSP ratio. No significant associations were found between CSP measures and diagnosis of TES or provisional levels of certainty for CTE pathology. Discussion: This study confirms previous findings, highlighting a greater prevalence of CSP and a greater CSP ratio in former American football players compared with unexposed asymptomatic controls. In addition, former professional players showed a greater CSP ratio than college players. Moreover, the relationship between estimates of CHII rotational forces and CSP measures suggests that cumulative frequency and strength of rotational forces experienced in football are associated with CSP. However, CSP does not directly correlate with TES diagnosis or provisional levels of certainty for CTE, indicating that it may be a consequence of RHI associated with rotational forces. Further research, especially longitudinal studies, is needed for confirmation and to explore changes over time.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA