RESUMEN
Two marine bacteria, designated strains MBE#61(T) and MBE#74(T), were isolated from a piece of sunken bamboo in the marine environment in Japan. Both of these strains were Gram-stain-negative, but had different cell shapes: MBE#61(T) was spiral, whereas MBE#74(T) was rod-shaped. The temperature, pH and salt concentration ranges for growth of strain MBE#61(T) were 4-38 °C (optimal at 32 °C), pH 4.5-11.0 (optimal at pH 7.0-8.0) and 1-11â% (optimal at 2â%) NaCl, whereas those of strain MBE#74(T) were 4-36 °C (optimal at 30 °C), pH 4.0-10.5 (optimal at pH 7.0-8.0) and 1-12â% (optimal at 4â%) NaCl. Phylogenetic analysis based on partial 16S rRNA gene sequences revealed that both strains belong to the genus Thalassospira within the class Alphaproteobacteria. Similarity between the 16S rRNA gene sequence of strain MBE#61(T) and those of the type strains of species of the genus Thalassospira was 97.5-99.0â%, and that of strain MBE#74(T) was 96.9-98.6â%; these two isolates were most closely related to Thalassospira lucentensis QMT2(T). However, the DNA-DNA hybridization values between T. lucentensis QMT2(T) and strain MBE#61(T) or MBE#74(T) were only 16.0â% and 7.1â%, respectively. The DNA G+C content of strain MBE#61(T) was 54.4 mol%, and that of strain MBE#74(T) was 55.9 mol%. The predominant isoprenoid quinone of the two strains was Q-10 (MBE#61(T), 97.3â%; MBE#74(T), 93.5â%). The major cellular fatty acids of strain MBE#61(T) were C18â:â1ω7c (31.1â%), summed feature 3 comprising C16â:â0ω7c/iso-C15â:â0 2-OH (26.1â%) and C16â:â0 (20.9â%); those of strain MBE#74(T) were C16â:â0 (26.2â%), C17â:â0 cyclo (19.9â%) and C18â:â1ω7c (12.1â%). On the basis of these results, strain MBE#61(T) and strain MBE#74(T) are considered to represent novel species of the genus Thalassospira, for which names Thalassospira alkalitolerans sp. nov. and Thalassospira mesophila sp. nov. are proposed. The type strains are MBE#61(T) (â=âJCM 18968(T)â=âCECT 8273(T)) and MBE#74(T) (â=âJCM 18969(T)â=âCECT 8274(T)), respectively. An emended description of the genus Thalassospira is also proposed.
Asunto(s)
Alphaproteobacteria/clasificación , Bambusa/microbiología , Filogenia , Agua de Mar/microbiología , Alphaproteobacteria/genética , Alphaproteobacteria/aislamiento & purificación , Técnicas de Tipificación Bacteriana , Composición de Base , ADN Bacteriano/genética , Ácidos Grasos/química , Sedimentos Geológicos/microbiología , Japón , Datos de Secuencia Molecular , Hibridación de Ácido Nucleico , ARN Ribosómico 16S/genética , Rhodospirillaceae/genética , Rhodospirillaceae/metabolismo , Análisis de Secuencia de ADN , Ubiquinona/químicaRESUMEN
The consumption of products made from Tartary buckwheat (Fagopyrum tataricum (L.) Gaertn.) has increased in recent years in Japan. Increased consumer demand has led to recognition of the need for early varieties of this crop with high and stable yields. In order to accomplish this, more information is needed on the genetic mechanisms affecting earliness and yield. We conducted genetic analysis of 3 agronomic traits (days to flowering, plant height and total seed weight per plant) to segregate F(2) and F(3) populations derived from a cross between Tartary buckwheat cultivars 'Hokuriku No. 4' and 'Ishisoba'. Broad-sense heritability estimates for days to flowering, plant height and total seed weight were 0.70, 0.62 and 0.75, respectively, in F(3) population. Narrow-sense heritability for total seed weight (0.51) was highest, followed by heritability for days to flowering (0.37), with heritability for plant height (0.26) lowest. Later flowering was associated with increased plant height and higher yields. From the F(4) generation, we identified twelve candidate plants with earlier maturity and reduced plant height compared to 'Hokuriku No. 4', but almost the same total seed weight. These results suggest that hybridization breeding using the single seed descent (SSD) method is an effective approach for improving agronomic characteristics of Tartary buckwheat.
RESUMEN
Floral scent attracts pollinators. We investigated the floral scent compounds recognized by pollinators in six Brassica crop species, including allogamous species with different genomes and autogamous species with two parental genomes and radish (Raphanus sativus). Biologically active compounds recognized by honeybees were screened from all floral compounds by combined gas chromatography-electroantennogram analysis and their profiles were determined by gas chromatography-mass spectrometry. Fourteen of the 52 compounds were active. All accessions had more than two active compounds, but the compounds greatly differed between the two genera. On the basis of similarities in whether active compounds were presence or absence, their amount and their composition ratio, we divided the Brassica accessions into three to five groups by cluster analyses. Most groups were composed of a mixture of allogamous and autogamous species sharing same genome, indicating that the variation depended on genome, not species. These results suggest that all species require pollinator visits for reproduction, despite their different reproductive systems. However, the inter-genus and intra-specific variations shown by the multiple groups within a species might cause different visitation frequencies by pollinators between genera and among accessions within a species, resulting in insufficient seed production in some accessions or species.
RESUMEN
This report describes the draft genome sequence of Novosphingobium sp. strain MBES04, isolated from sunken wood from Suruga Bay, Japan, which is capable of degrading a wide range of lignin-related aromatic monomers. The draft genome sequence contains 5,361,448 bp, with a G+C content of 65.4%.