Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 163
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 153(7): 1602-11, 2013 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-23768684

RESUMEN

The fluorescent protein toolbox has revolutionized experimental biology. Despite this advance, no fluorescent proteins have been identified from vertebrates, nor has chromogenic ligand-inducible activation or clinical utility been demonstrated. Here, we report the cloning and characterization of UnaG, a fluorescent protein from Japanese eel. UnaG belongs to the fatty-acid-binding protein (FABP) family, and expression in eel is restricted to small-diameter muscle fibers. On heterologous expression in cell lines or mouse brain, UnaG produces oxygen-independent green fluorescence. Remarkably, UnaG fluorescence is triggered by an endogenous ligand, bilirubin, a membrane-permeable heme metabolite and clinical health biomarker. The holoUnaG structure at 1.2 Å revealed a biplanar coordination of bilirubin by reversible π-conjugation, and we used this high-affinity and high-specificity interaction to establish a fluorescence-based human bilirubin assay with promising clinical utility. UnaG will be the prototype for a versatile class of ligand-activated fluorescent proteins, with applications in research, medicine, and bioengineering.


Asunto(s)
Anguilas/metabolismo , Proteínas de Peces/genética , Proteínas de Peces/aislamiento & purificación , Proteínas Fluorescentes Verdes/aislamiento & purificación , Secuencia de Aminoácidos , Animales , Bilirrubina/metabolismo , Clonación Molecular , Proteínas de Peces/química , Proteínas de Peces/metabolismo , Proteínas Fluorescentes Verdes/química , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Datos de Secuencia Molecular , Músculos/metabolismo , Alineación de Secuencia
2.
J Biol Chem ; 299(8): 104940, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37343702

RESUMEN

Ostreolysin A6 (OlyA6) is an oyster mushroom-derived membrane-binding protein that, upon recruitment of its partner protein, pleurotolysin B, forms a cytolytic membrane pore complex. OlyA6 itself is not cytolytic but has been reported to exhibit pro-apoptotic activities in cell culture. Here we report the formation dynamics and the structure of OlyA6 assembly on a lipid membrane containing an OlyA6 high-affinity receptor, ceramide phosphoethanolamine, and cholesterol. High-speed atomic force microscopy revealed the reorganization of OlyA6 dimers from initial random surface coverage to 2D protein crystals composed of hexameric OlyA6 repeat units. Crystal growth took place predominantly in the longitudinal direction by the association of OlyA6 dimers, forming a hexameric unit cell. Molecular-level examination of the OlyA6 crystal elucidated the arrangement of dimers within the unit cell and the structure of the dimer that recruits pleurotolysin B for pore formation.


Asunto(s)
Proteínas Fúngicas , Proteínas Hemolisinas , Modelos Moleculares , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/ultraestructura , Proteínas Hemolisinas/química , Proteínas Hemolisinas/metabolismo , Proteínas Hemolisinas/ultraestructura , Proteínas de la Membrana , Cristalización , Microscopía de Fuerza Atómica , Multimerización de Proteína , Estructura Terciaria de Proteína
3.
Biochem Biophys Res Commun ; 716: 149954, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38704887

RESUMEN

Membrane lipids and proteins form dynamic domains crucial for physiological and pathophysiological processes, including viral infection. Many plasma membrane proteins, residing within membrane domains enriched with cholesterol (CHOL) and sphingomyelin (SM), serve as receptors for attachment and entry of viruses into the host cell. Among these, human coronaviruses, including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), use proteins associated with membrane domains for initial binding and internalization. We hypothesized that the interaction of lipid-binding proteins with CHOL in plasma membrane could sequestrate lipids and thus affect the efficiency of virus entry into host cells, preventing the initial steps of viral infection. We have prepared CHOL-binding proteins with high affinities for lipids in the plasma membrane of mammalian cells. Binding of the perfringolysin O domain four (D4) and its variant D4E458L to membrane CHOL impaired the internalization of the receptor-binding domain of the SARS-CoV-2 spike protein and the pseudovirus complemented with the SARS-CoV-2 spike protein. SARS-CoV-2 replication in Vero E6 cells was also decreased. Overall, our results demonstrate that the integrity of CHOL-rich membrane domains and the accessibility of CHOL in the membrane play an essential role in SARS-CoV-2 cell entry.


Asunto(s)
Membrana Celular , Colesterol , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus , Internalización del Virus , Células Vero , Chlorocebus aethiops , Colesterol/metabolismo , Animales , SARS-CoV-2/metabolismo , SARS-CoV-2/fisiología , Membrana Celular/metabolismo , Membrana Celular/virología , Glicoproteína de la Espiga del Coronavirus/metabolismo , Glicoproteína de la Espiga del Coronavirus/química , Humanos , Proteínas Portadoras/metabolismo , COVID-19/virología , COVID-19/metabolismo , Unión Proteica
4.
Cell Mol Life Sci ; 80(6): 167, 2023 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-37249637

RESUMEN

Monosialoganglioside GM3 is the simplest ganglioside involved in various cellular signaling. Cell surface distribution of GM3 is thought to be crucial for the function of GM3, but little is known about the cell surface GM3 distribution. It was shown that anti-GM3 monoclonal antibody binds to GM3 in sparse but not in confluent melanoma cells. Our model membrane study evidenced that monoclonal anti-GM3 antibodies showed stronger binding when GM3 was in less fluid membrane environment. Studies using fluorescent GM3 analogs suggested that GM3 was clustered in less fluid membrane. Moreover, fluorescent lifetime measurement showed that cell surface of high density melanoma cells is more fluid than that of low density cells. Lipidomics and fatty acid supplementation experiment suggested that monounsaturated fatty acid-containing phosphatidylcholine contributed to the cell density-dependent membrane fluidity. Our results indicate that anti-GM3 antibody senses GM3 clustering and the number and/or size of GM3 cluster differ between sparse and confluent melanoma cells.


Asunto(s)
Gangliósido G(M3) , Melanoma , Humanos , Gangliósido G(M3)/metabolismo , Membrana Celular/metabolismo , Anticuerpos Monoclonales , Melanoma/metabolismo , Recuento de Células
5.
J Biol Chem ; 298(10): 102455, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36063994

RESUMEN

Pore-forming proteins perforate lipid membranes and consequently affect their integrity and cell fitness. Therefore, it is not surprising that many of these proteins from bacteria, fungi, or certain animals act as toxins. While pore-forming proteins have also been found in plants, there is little information about their molecular structure and mode of action. Bryoporin is a protein from the moss Physcomitrium patens, and its corresponding gene was found to be upregulated by various abiotic stresses, especially dehydration, as well as upon fungal infection. Based on the amino acid sequence, it was suggested that bryoporin was related to the actinoporin family of pore-forming proteins, originally discovered in sea anemones. Here, we provide the first detailed structural and functional analysis of this plant cytolysin. The crystal structure of monomeric bryoporin is highly similar to those of actinoporins. Our cryo-EM analysis of its pores showed an actinoporin-like octameric structure, thereby revealing a close kinship of proteins from evolutionarily distant organisms. This was further confirmed by our observation of bryoporin's preferential binding to and formation of pores in membranes containing animal sphingolipids, such as sphingomyelin and ceramide phosphoethanolamine; however, its binding affinity was weaker than that of actinoporin equinatoxin II. We determined bryoporin did not bind to major sphingolipids found in fungi or plants, and its membrane-binding and pore-forming activity was enhanced by various sterols. Our results suggest that bryoporin could represent a part of the moss defense arsenal, acting as a pore-forming toxin against membranes of potential animal pathogens, parasites, or predators.


Asunto(s)
Bryopsida , Porinas , Animales , Secuencia de Aminoácidos , Bryopsida/genética , Bryopsida/metabolismo , Venenos de Cnidarios/química , Citotoxinas , Porinas/genética , Porinas/metabolismo , Anémonas de Mar/química
6.
Cell Mol Life Sci ; 79(6): 324, 2022 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-35644822

RESUMEN

We identified a mushroom-derived protein, maistero-2 that specifically binds 3-hydroxy sterol including cholesterol (Chol). Maistero-2 bound lipid mixture in Chol-dependent manner with a binding threshold of around 30%. Changing lipid composition did not significantly affect the threshold concentration. EGFP-maistero-2 labeled cell surface and intracellular organelle Chol with higher sensitivity than that of well-established Chol probe, D4 fragment of perfringolysin O. EGFP-maistero-2 revealed increase of cell surface Chol during neurite outgrowth and heterogeneous Chol distribution between CD63-positive and LAMP1-positive late endosomes/lysosomes. The absence of strictly conserved Thr-Leu pair present in Chol-dependent cytolysins suggests a distinct Chol-binding mechanism for maistero-2.


Asunto(s)
Proteínas Portadoras , Esteroles , Proteínas Portadoras/metabolismo , Colesterol/metabolismo , Endosomas/metabolismo , Lisosomas/metabolismo , Proyección Neuronal , Esteroles/metabolismo
7.
Int J Mol Sci ; 24(24)2023 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-38139092

RESUMEN

The role of sphingomyelin metabolism and vitamin C in cancer has been widely described with conflicting results ranging from a total absence of effect to possible preventive and/or protective effects. The aim of this study was to establish the possible involvement of sphingomyelin metabolism in the changes induced by vitamin C in breast cancer cells. The MCF7 cell line reproducing luminal A breast cancer and the MDA-MB-231 cell line reproducing triple-negative breast cancer were used. Cell phenotype was tested by estrogen receptor, progesterone receptor, human epidermal growth factor receptor 2 expression, and proliferation index percentage. Sphingomyelin was localized by an EGFP-NT-Lys fluorescent probe. Sphingomyelin metabolism was analyzed by RT-PCR, Western blotting and UFLC-MS/MS. The results showed that a high dose of vitamin C produced reduced cell viability, modulated cell cycle related genes, and changed the cell phenotype with estrogen receptor downregulation in MCF7 cell. In these cells, the catabolism of sphingomyelin was promoted with a large increase in ceramide content. No changes in viability and molecular expression were observed in MB231 cells. In conclusion, a high dose of vitamin C induces changes in the luminal A cell line involving sphingomyelin metabolism.


Asunto(s)
Neoplasias de la Mama , Neoplasias de la Mama Triple Negativas , Humanos , Femenino , Células MCF-7 , Neoplasias de la Mama/metabolismo , Esfingomielinas , Ácido Ascórbico/farmacología , Espectrometría de Masas en Tándem , Vitaminas/farmacología , Línea Celular Tumoral , Proliferación Celular
8.
EMBO J ; 36(10): 1412-1433, 2017 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-28377464

RESUMEN

StAR-related lipid transfer domain-3 (STARD3) is a sterol-binding protein that creates endoplasmic reticulum (ER)-endosome contact sites. How this protein, at the crossroad between sterol uptake and synthesis pathways, impacts the intracellular distribution of this lipid was ill-defined. Here, by using in situ cholesterol labeling and quantification, we demonstrated that STARD3 induces cholesterol accumulation in endosomes at the expense of the plasma membrane. STARD3-mediated cholesterol routing depends both on its lipid transfer activity and its ability to create ER-endosome contacts. Corroborating this, in vitro reconstitution assays indicated that STARD3 and its ER-anchored partner, Vesicle-associated membrane protein-associated protein (VAP), assemble into a machine that allows a highly efficient transport of cholesterol within membrane contacts. Thus, STARD3 is a cholesterol transporter scaffolding ER-endosome contacts and modulating cellular cholesterol repartition by delivering cholesterol to endosomes.


Asunto(s)
Proteínas Portadoras/metabolismo , Membrana Celular/metabolismo , Colesterol/metabolismo , Retículo Endoplásmico/metabolismo , Endosomas/metabolismo , Proteínas de la Membrana/metabolismo , Transporte Biológico , Células HeLa , Humanos , Unión Proteica , Proteínas de Transporte Vesicular/metabolismo
9.
FASEB J ; 34(5): 6185-6197, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32162745

RESUMEN

During adhesion, cells develop filopodia to facilitate the attachment to the extracellular matrix. The small guanosine triphosphate (GTP)-binding protein, Cdc42, plays a central role in the formation of filopodia. It has been reported that Cdc42 activity is regulated by cholesterol (Chol). We examined Chol distribution in filopodia using Chol-binding domain 4 (D4) fragment of bacterial toxin, perfringolysin O that senses high membrane concentration of Chol. Our results indicate that fluorescent D4 was enriched at the tip of the outer leaflet of filopodia in the initiation phase of cell adhesion. This enrichment was accompanied by a defect of D4 labeling in the inner leaflet. Steady phase adhered cell experiment indicated that both Cdc42 and ATP-binding cassette transporter, ABCA1, were involved in the binding of D4 to the cell surface. Depletion of Chol activated Cdc42. Our results suggest that asymmetric distribution of Chol at the tip of filopodia induces activation of Cdc42, and thus, facilitates filopodia formation.


Asunto(s)
Transportador 1 de Casete de Unión a ATP/metabolismo , Adhesión Celular , Membrana Celular/metabolismo , Colesterol/metabolismo , Guanosina Trifosfato/metabolismo , Seudópodos/metabolismo , Proteína de Unión al GTP cdc42/metabolismo , Células HeLa , Humanos , Seudópodos/química , Transducción de Señal
10.
EMBO Rep ; 20(11): e48143, 2019 11 05.
Artículo en Inglés | MEDLINE | ID: mdl-31535451

RESUMEN

NPC is a neurodegenerative disorder characterized by cholesterol accumulation in endolysosomal compartments. It is caused by mutations in the gene encoding NPC1, an endolysosomal protein mediating intracellular cholesterol trafficking. Cognitive and psychiatric alterations are hallmarks in NPC patients pointing to synaptic defects. However, the role of NPC1 in synapses has not been explored. We show that NPC1 is present in the postsynaptic compartment and is locally translated during LTP. A mutation in a region of the NPC1 gene commonly altered in NPC patients reduces NPC1 levels at synapses due to enhanced NPC1 protein degradation. This leads to shorter postsynaptic densities, increased synaptic cholesterol and impaired LTP in NPC1nmf164 mice with cognitive deficits. NPC1 mediates cholesterol mobilization and enables surface delivery of CYP46A1 and GluA1 receptors necessary for LTP, which is defective in NPC1nmf164 mice. Pharmacological activation of CYP46A1 normalizes synaptic levels of cholesterol, LTP and cognitive abilities, and extends life span of NPC1nmf164 mice. Our results unveil NPC1 as a regulator of cholesterol dynamics in synapses contributing to synaptic plasticity, and provide a potential therapeutic strategy for NPC patients.


Asunto(s)
Colesterol 24-Hidroxilasa/metabolismo , Colesterol/metabolismo , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Potenciación a Largo Plazo , Enfermedad de Niemann-Pick Tipo C/genética , Enfermedad de Niemann-Pick Tipo C/metabolismo , Animales , Modelos Animales de Enfermedad , Humanos , Inmunohistoquímica , Ratones , Ratones Noqueados , Modelos Biológicos , Proteína Niemann-Pick C1 , Biosíntesis de Proteínas , Receptores AMPA/metabolismo , Sinapsis/metabolismo
11.
Adv Exp Med Biol ; 1310: 81-90, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33834433

RESUMEN

In this chapter, we show the visualization of lipid domains using a specific lipid-binding protein and super-resolution microscopy. Lipid rafts are plasma membrane domains enriched in both sphingolipids and sterols that play key roles in various physiological events. We identified a novel protein that specifically binds to a complex of sphingomyelin (SM) and cholesterol (Chol). The isolated protein, nakanori, labels the SM/Chol complex at the outer leaflet of the plasma membrane in mammalian cells. Structured illumination microscopic images suggested that the influenza virus buds from the edges of the SM/Chol domains in MDCK cells. Furthermore, a photoactivated localization microscopy analysis indicated that the SM/Chol complex forms domains in the outer leaflet, just above the phosphatidylinositol 4,5-bisphosphate domains in the inner leaflet. These observations provide significant insight into the structure and function of lipid rafts.


Asunto(s)
Microscopía , Esfingomielinas , Animales , Membrana Celular , Colesterol , Microdominios de Membrana
12.
Semin Cell Dev Biol ; 73: 188-198, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-28751253

RESUMEN

Lysenin, which is an earthworm toxin, strongly binds to sphingomyelin (SM). Lysenin oligomerizes on SM-rich domains and can induce cell death by forming pores in the membrane. In this review, the assembly of lysenin on SM-containing membranes is discussed mostly on the basis of the information gained by atomic force microscopy (AFM). AFM data show that lysenin assembles into a hexagonal close packed (hcp) structure by rapid reorganization of its oligomers on an SM/cholesterol membrane. In case of a phase-separated membrane of SM, lysenin induces phase mixing as a result of pore formation in SM-rich domains, and consequently its hcp assembly covers the entire membrane. Besides the lytic action, lysenin is important as an SM marker and its pore has the potential to be used as a biosensor in the future. These points are also highlighted in this review.


Asunto(s)
Microscopía de Fuerza Atómica , Esfingomielinas/química , Esfingomielinas/metabolismo , Toxinas Biológicas/química , Toxinas Biológicas/metabolismo , Esfingomielinas/farmacología , Termodinámica , Toxinas Biológicas/farmacología
13.
Int Immunol ; 31(4): 211-223, 2019 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-30561621

RESUMEN

Sphingomyelin (SM) in combination with cholesterol forms specialized membrane lipid microdomains in which specific receptors and signaling molecules are localized or recruited to mediate intracellular signaling. SM-microdomain levels in mouse thymus were low in the early CD4+CD8+ double-positive (DP) stage prior to thymic selection and increased >10-fold during late selection. T-cell receptor (TCR) signal strength is a key factor determining whether DP thymocytes undergo positive or negative selection. We examined the role of SM-microdomains in thymocyte development and related TCR signaling, using SM synthase 1 (SMS1)-deficient (SMS1-/-) mice which display low SM expression in all thymocyte populations. SMS1 deficiency caused reduced cell numbers after late DP stages in TCR transgenic models. TCR-dependent apoptosis induced by anti-CD3 treatment was enhanced in SMS1-/- DP thymocytes both in vivo and in vitro. SMS1-/- DP thymocytes, relative to controls, showed increased phosphorylation of TCR-proximal kinase ZAP-70 and increased expression of Bim and Nur77 proteins involved in negative selection following TCR stimulation. Addition of SM to cultured normal DP thymocytes led to greatly increased surface expression of SM-microdomains, with associated reduction of TCR signaling and TCR-induced apoptosis. Our findings indicate that SM-microdomains are increased in late DP stages, function as negative regulators of TCR signaling and modulate the efficiency of TCR-proximal signaling to promote thymic selection events leading to subsequent developmental stages.


Asunto(s)
Membrana Celular/metabolismo , Linfocitos T/fisiología , Timocitos/fisiología , Transferasas (Grupos de Otros Fosfatos Sustitutos)/metabolismo , Animales , Apoptosis , Diferenciación Celular , Células Cultivadas , Femenino , Inmunomodulación , Activación de Linfocitos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Receptores de Antígenos de Linfocitos T/metabolismo , Transducción de Señal , Transferasas (Grupos de Otros Fosfatos Sustitutos)/genética
14.
EMBO J ; 34(5): 669-88, 2015 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-25595798

RESUMEN

P4-ATPases translocate aminophospholipids, such as phosphatidylserine (PS), to the cytosolic leaflet of membranes. PS is highly enriched in recycling endosomes (REs) and is essential for endosomal membrane traffic. Here, we show that PS flipping by an RE-localized P4-ATPase is required for the recruitment of the membrane fission protein EHD1. Depletion of ATP8A1 impaired the asymmetric transbilayer distribution of PS in REs, dissociated EHD1 from REs, and generated aberrant endosomal tubules that appear resistant to fission. EHD1 did not show membrane localization in cells defective in PS synthesis. ATP8A2, a tissue-specific ATP8A1 paralogue, is associated with a neurodegenerative disease (CAMRQ). ATP8A2, but not the disease-causative ATP8A2 mutant, rescued the endosomal defects in ATP8A1-depleted cells. Primary neurons from Atp8a2-/- mice showed a reduced level of transferrin receptors at the cell surface compared to Atp8a2+/+ mice. These findings demonstrate the role of P4-ATPase in membrane fission and give insight into the molecular basis of CAMRQ.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Endosomas/metabolismo , Modelos Biológicos , Proteínas de Transferencia de Fosfolípidos/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Adenosina Trifosfatasas/genética , Análisis de Varianza , Animales , Proteínas Bacterianas , Transporte Biológico/fisiología , Western Blotting , Células COS , Chlorocebus aethiops , Cartilla de ADN/genética , ADN Complementario/genética , Células HeLa , Humanos , Inmunohistoquímica , Ratones , Ratones Noqueados , Microscopía Confocal , Fosfatidilserinas/metabolismo , Proteínas de Transferencia de Fosfolípidos/genética , Reacción en Cadena de la Polimerasa , Interferencia de ARN , Estreptolisinas
15.
Proc Natl Acad Sci U S A ; 113(28): 7834-9, 2016 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-27342861

RESUMEN

Lipid membrane curvature plays important roles in various physiological phenomena. Curvature-regulated dynamic membrane remodeling is achieved by the interaction between lipids and proteins. So far, several membrane sensing/sculpting proteins, such as Bin/amphiphysin/Rvs (BAR) proteins, are reported, but there remains the possibility of the existence of unidentified membrane-deforming proteins that have not been uncovered by sequence homology. To identify new lipid membrane deformation proteins, we applied liposome-based microscopic screening, using unbiased-darkfield microscopy. Using this method, we identified phospholipase Cß1 (PLCß1) as a new candidate. PLCß1 is well characterized as an enzyme catalyzing the hydrolysis of phosphatidylinositol-4,5-bisphosphate (PIP2). In addition to lipase activity, our results indicate that PLCß1 possessed the ability of membrane tubulation. Lipase domains and inositol phospholipids binding the pleckstrin homology (PH) domain of PLCß1 were not involved, but the C-terminal sequence was responsible for this tubulation activity. Computational modeling revealed that the C terminus displays the structural homology to the BAR domains, which is well known as a membrane sensing/sculpting domain. Overexpression of PLCß1 caused plasma membrane tubulation, whereas knockdown of the protein reduced the number of caveolae and induced the evagination of caveolin-rich membrane domains. Taken together, our results suggest a new function of PLCß1: plasma membrane remodeling, and in particular, caveolae formation.


Asunto(s)
Caveolas/fisiología , Fosfolipasa C beta/metabolismo , Animales , Liposomas , Ratones , Ratones Endogámicos C57BL , Células 3T3 Swiss
16.
Toxicol Appl Pharmacol ; 342: 50-59, 2018 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-29407365

RESUMEN

Infection is a major cause of mortality in chronic kidney disease (CKD) patients. Although immune dysfunction is a risk factor for infection in CKD patients, its causes are not fully elucidated. In the present study, we evaluated whether p-cresyl sulfate (pCS), an intestinal bacteria-derived uremic toxin, was involved in immune dysfunction in CKD. We used osmotic pumps to establish adenine-induced renal dysfunction mice with a chronically high blood pCS concentration. Analysis of lymphocyte subsets revealed that pCS significantly reduced peripheral B cells in renal dysfunction mice. In vitro, pCS inhibited interleukin (IL)-7-induced proliferation of CD43+ B-cell progenitors and suppressed IL-7-induced phosphorylation of signal transducer and activator of transcription 5 (STAT5) in these cells. Cell cycle analysis showed that pCS significantly decreased the percentage of CD43+ B-cell progenitors in S phase and increased that in G1 phase. These results suggest that pCS suppressed IL-7-induced STAT5 signaling and inhibited B-cell progenitor proliferation, leading to reduction of peripheral B cells in adenine-induced renal dysfunction mice. Therefore, pCS decreases peripheral B cells by inhibiting proliferation of CD43+ B-cell progenitors and is a likely cause of immune dysfunction in CKD patients.


Asunto(s)
Adenina/toxicidad , Linfocitos B/patología , Cresoles/toxicidad , Insuficiencia Renal Crónica/inducido químicamente , Insuficiencia Renal Crónica/patología , Ésteres del Ácido Sulfúrico/toxicidad , Animales , Linfocitos B/efectos de los fármacos , Linfocitos B/inmunología , Células de la Médula Ósea/efectos de los fármacos , Células de la Médula Ósea/inmunología , Células de la Médula Ósea/patología , Proliferación Celular/efectos de los fármacos , Proliferación Celular/fisiología , Relación Dosis-Respuesta a Droga , Femenino , Ratones , Ratones Endogámicos BALB C , Insuficiencia Renal Crónica/inmunología
17.
FASEB J ; 31(4): 1301-1322, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-27492925

RESUMEN

We identified a novel, nontoxic mushroom protein that specifically binds to a complex of sphingomyelin (SM), a major sphingolipid in mammalian cells, and cholesterol (Chol). The purified protein, termed nakanori, labeled cell surface domains in an SM- and Chol-dependent manner and decorated specific lipid domains that colocalized with inner leaflet small GTPase H-Ras, but not K-Ras. The use of nakanori as a lipid-domain-specific probe revealed altered distribution and dynamics of SM/Chol on the cell surface of Niemann-Pick type C fibroblasts, possibly explaining some of the disease phenotype. In addition, that nakanori treatment of epithelial cells after influenza virus infection potently inhibited virus release demonstrates the therapeutic value of targeting specific lipid domains for anti-viral treatment.-Makino, A., Abe, M., Ishitsuka, R., Murate, M., Kishimoto, T., Sakai, S., Hullin-Matsuda, F., Shimada, Y., Inaba, T., Miyatake, H., Tanaka, H., Kurahashi, A., Pack, C.-G., Kasai, R. S., Kubo, S., Schieber, N. L., Dohmae, N., Tochio, N., Hagiwara, K., Sasaki, Y., Aida, Y., Fujimori, F., Kigawa, T., Nishibori, K., Parton, R. G., Kusumi, A., Sako, Y., Anderluh, G., Yamashita, M., Kobayashi, T., Greimel, P., Kobayashi, T. A novel sphingomyelin/cholesterol domain-specific probe reveals the dynamics of the membrane domains during virus release and in Niemann-Pick type C.


Asunto(s)
Colesterol/metabolismo , Proteínas Fúngicas/farmacología , Grifola/química , Microdominios de Membrana/efectos de los fármacos , Enfermedad de Niemann-Pick Tipo C/metabolismo , Esfingomielinas/metabolismo , Sitios de Unión , Células Cultivadas , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Células HeLa , Humanos , Microdominios de Membrana/metabolismo , Microdominios de Membrana/virología , Unión Proteica , Liberación del Virus
18.
Exp Cell Res ; 350(1): 103-114, 2017 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-27865938

RESUMEN

Mammalian or mechanistic target of rapamycin complex 1 (mTORC1) is a master regulator of cell growth, metabolism, and cell differentiation. Recent studies have revealed that the recruitment of mTORC1 to lysosomes is essential for its activation. The ceramide analogue 1-phenyl-2-decanoylamino-3-morpholino-1-propanol (PDMP), a well known glycosphingolipid synthesis inhibitor, also affects the structures and functions of various organelles, including lysosomes and endoplasmic reticulum (ER). We investigated whether PDMP regulates the mTORC1 activity through its effects on organellar behavior. PDMP induced the translocation of mTORC1 from late endosomes/lysosomes, leading to the dissociation of mTORC1 from its activator Rheb in MC3T3-E1 cells. Surprisingly, we found mTORC1 translocation to the ER upon PDMP treatment. This effect of PDMP was independent of its action as the inhibitor, since two stereoisomers of PDMP, with and without the inhibitor activity, showed essentially the same effect. We confirmed that PDMP inhibits the mTORC1 activity based on the decrease in the phosphorylation of ribosomal S6 kinase, a downstream target of mTORC1, and the increase in LC3 puncta, reflecting autophagosome formation. Furthermore, PDMP inhibited the mTORC1-dependent osteoblastic cell proliferation and differentiation of MC3T3-E1 cells. Accordingly, the present results reveal a novel mechanism of PDMP, which inhibits the mTORC1 activity by inducing the translocation of mTOR from lysosomes to the ER.


Asunto(s)
Autofagia/efectos de los fármacos , Retículo Endoplásmico/efectos de los fármacos , Lisosomas/efectos de los fármacos , Morfolinas/farmacología , Complejos Multiproteicos/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Animales , Apoptosis/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Ceramidas/química , Ceramidas/farmacología , Retículo Endoplásmico/metabolismo , Endosomas/efectos de los fármacos , Endosomas/metabolismo , Lisosomas/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina , Ratones , Complejos Multiproteicos/antagonistas & inhibidores , Transporte de Proteínas , Serina-Treonina Quinasas TOR/antagonistas & inhibidores
19.
J Toxicol Pathol ; 31(4): 307-313, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30393435

RESUMEN

Cardiotoxicity is a concern in the development of microtubule-disassembling agents (MDAs) as vascular-disrupting agents of tumors. This study investigated cardiotoxicity in rats induced by a single-dose of combretastatin A4 disodium phosphate (CA4DP), an MDA and discussed the use of this rat model in nonclinical studies of MDAs. First, CA4DP (120 mg/kg) was administered to rats intravenously, and cardiac histopathology and blood biomarkers were examined after 0.5, 24, and 72 h. Next, CA4DP (120 mg/kg) was administered to rats intravenously, and the electrocardiography and echocardiography results were analyzed. The results showed that at 0.5 h after dosing, plasma creatine kinase (CK), CK-muscle/brain (CK-MB), and fatty acid binding protein 3 levels increased. At 24 h, lactate dehydrogenase (LDH)-1, CK, and CK-MB levels increased, and multifocal vacuolar degeneration of myocardial cells was observed in the apical inner layer. At 72 h, LDH-1 levels were increased, and multifocal myocardial necrosis was observed in the interventricular septum and inner layer of the apex of left ventricular wall. Furthermore, at 0.5 h, heart rate (HR), ejection fraction (EF), and cardiac output (CO) decreased. At 24 h, CO decreased. Finally, at 72 h, HR, EF, and CO decreased, and depression of the T-wave amplitude was observed. In conclusion, myocardial injury, bradycardia, and depressed cardiac function were induced in rats by a single-dose of CA4DP. The lesion distribution and electrocardiographic features suggested that myocardial injury was induced by ischemia. These findings are similar to MDA-induced cardiotoxicity in humans, and this rat model will prove useful in studies of the cardiotoxicity in humans.

20.
J Biol Chem ; 291(50): 26109-26125, 2016 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-27815506

RESUMEN

Hormone-sensitive acute steroid biosynthesis requires trafficking of cholesterol from intracellular sources to the inner mitochondrial membrane. The precise location of the intracellular cholesterol and its transport mechanism are uncertain. Perfringolysin O, produced by Clostridium perfringens, binds cholesterol. Its fourth domain (D4) retains cholesterol-binding properties but not cytotoxicity. We transfected steroidogenic MA-10 cells of mouse Leydig cell tumors with the mCherry-D4 plasmid. Tagged D4 with fluorescent proteins enabled us to track cholesterol. The staining was primarily localized to the inner leaflet of the plasma membrane and was partially released upon treatment with dibutyryl-cAMP (Bt2cAMP), a cAMP analog. Inhibitors of cholesterol import into mitochondria blocked steroidogenesis and prevented release of D4 (and presumably cholesterol) from the plasma membrane. We conclude that the bulk of the steroidogenic pool of cholesterol, mobilized by Bt2cAMP for acute steroidogenesis, originates from the plasma membrane. Treatment of the cells with steroid metabolites, 22(R)-hydroxycholesterol and pregnenolone, also reduced D4 release from the plasma membrane, perhaps evidence for a feedback effect of elevated steroid formation on cholesterol release. Interestingly, D4 staining was localized to endosomes during Bt2cAMP stimulation suggesting that these organelles are on the route of cholesterol trafficking from the plasma membrane to mitochondria. Finally, D4 was expressed in primary rat Leydig cells with a lentivirus and was released from the plasma membrane following Bt2cAMP treatment. We conclude that the plasma membrane is the source of cholesterol for steroidogenesis in these cells as well as in MA-10 cells.


Asunto(s)
Membrana Celular/metabolismo , Hidroxicolesteroles/metabolismo , Células Intersticiales del Testículo/metabolismo , Mitocondrias/metabolismo , Pregnenolona/metabolismo , Animales , Toxinas Bacterianas/biosíntesis , Toxinas Bacterianas/genética , Transporte Biológico Activo/efectos de los fármacos , Transporte Biológico Activo/fisiología , Bucladesina/farmacología , Línea Celular Tumoral , Membrana Celular/genética , Proteínas Hemolisinas/biosíntesis , Proteínas Hemolisinas/genética , Células Intersticiales del Testículo/citología , Masculino , Ratones , Mitocondrias/genética , Ratas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA