Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Endocrinology ; 165(12)2024 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-39445778

RESUMEN

Aging of the general population has led to a substantial increase in the prevalence of osteoporosis over the past decades. While there are effective pharmacological agents that increase bone formation, decrease bone resorption, and decrease fracture risk, they do not uniformly cure osteoporosis. This has prompted investigations to examine whether combination therapy (COMBO) with these agents can result in an additive benefit. Since concomitant therapy with denosumab and teriparatide has shown promise in this respect, investigations were undertaken to explore whether the changes in osteogenic phenotype could provide insight into the cellular and molecular mechanism of this effect. Investigations were performed in postmenopausal women receiving denosumab, teriparatide, or both for 3 months. Histomorphometric parameters were the primary outcome, while exploratory studies examined RNA expression in bone biopsies as well as in sorted and cultured bone marrow stromal cells (BMSCs). Osteogenic colony forming units of BMSCs were also evaluated. The studies demonstrated that COMBO results in an increase in osteoprogenitors, evidenced by an increase in osteoblastic colony-forming units. This was associated with an increased in BMSC expression of LGR6 (leucine-rich repeat containing G protein-coupled receptor 6), a stem cell marker and activator of the canonical Wnt signaling pathway. These data suggest that enhancement of canonical Wnt signaling contributes to the increase in osteoprogenitors and consequently an increase in bone density in postmenopausal women receiving COMBO for osteoporosis.


Asunto(s)
Conservadores de la Densidad Ósea , Denosumab , Osteogénesis , Osteoporosis Posmenopáusica , Teriparatido , Humanos , Femenino , Osteogénesis/efectos de los fármacos , Teriparatido/uso terapéutico , Teriparatido/farmacología , Persona de Mediana Edad , Conservadores de la Densidad Ósea/uso terapéutico , Conservadores de la Densidad Ósea/farmacología , Anciano , Osteoporosis Posmenopáusica/tratamiento farmacológico , Osteoporosis Posmenopáusica/metabolismo , Denosumab/uso terapéutico , Denosumab/farmacología , Posmenopausia , Fenotipo , Anabolizantes/farmacología , Anabolizantes/uso terapéutico , Células Madre Mesenquimatosas/efectos de los fármacos , Células Madre Mesenquimatosas/metabolismo , Quimioterapia Combinada , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/genética
2.
iScience ; 26(9): 107548, 2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37636062

RESUMEN

Low circulating phosphate (Pi) leads to rickets, characterized by expansion of the hypertrophic chondrocytes (HCs) in the growth plate due to impaired HC apoptosis. Studies in HCs demonstrate that Pi activates the Raf/MEK/ERK1/2 and mitochondrial apoptotic pathways. To determine how Pi activates these pathways, a small-molecule screen was undertaken to identify inhibitors of Pi-induced ERK1/2 phosphorylation in HCs. Vascular endothelial growth factor receptor 2 (VEGFR2) was identified as a target. In vitro studies in HCs demonstrate that VEGFR2 inhibitors block Pi-induced pERK1/2 and caspase-9 cleavage. Like Pi, rhVEGF activates ERK1/2 and caspase-9 in HCs and induces phosphorylation of VEGFR2, confirming that Pi activates this signaling pathway in HCs. Chondrocyte-specific depletion of VEGFR2 leads to an increase in HCs, impaired vascular invasion, and a decrease in HC apoptosis. Thus, these studies define a role for VEGFR2 in transducing Pi signals and mediating its effects on growth plate maturation.

3.
Endocrinology ; 165(1)2023 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-38066669

RESUMEN

X-linked hypophosphatemia (XLH) is the most common form of hereditary hypophosphatemic rickets. The genetic basis for XLH is loss of function mutations in the phosphate-regulating endopeptidase X-linked (PHEX), which leads to increased circulating fibroblast growth factor 23 (FGF23). This increase in FGF23 impairs activation of vitamin D and attenuates renal phosphate reabsorption, leading to rickets. Previous studies have demonstrated that ablating FGF23 in the Hyp mouse model of XLH leads to hyperphosphatemia, high levels of 1,25-dihydroxyvitamin D, and is not associated with the development of rickets. Studies were undertaken to define a role for the increase in 1,25-dihydroxyvitamin D levels in the prevention of rickets in Hyp mice lacking FGF23. These mice were mated to mice lacking Cyp27b1, the enzyme responsible for activating vitamin D metabolites, to generate Hyp mice lacking both FGF23 and 1,25-dihydroxyvitamin D (FCH mice). Mice were fed a special diet to maintain normal mineral ion homeostasis. Despite normal mineral ions, Hyp mice lacking both FGF23 and Cyp27b1 developed rickets, characterized by an interrupted, expanded hypertrophic chondrocyte layer and impaired hypertrophic chondrocyte apoptosis. This phenotype was prevented when mice were treated with 1,25-dihydroxyvitamin D from day 2 until sacrifice on day 30. Interestingly, mice lacking FGF23 and Cyp27b1 without the PHEX mutation did not exhibit rickets. These findings define an essential PHEX-dependent, FGF23-independent role for 1,25-dihydroxyvitamin D in XLH and have important therapeutic implications for the treatment of this genetic disorder.


Asunto(s)
Raquitismo Hipofosfatémico Familiar , Animales , Ratones , 25-Hidroxivitamina D3 1-alfa-Hidroxilasa/genética , Raquitismo Hipofosfatémico Familiar/metabolismo , Factores de Crecimiento de Fibroblastos/genética , Factores de Crecimiento de Fibroblastos/metabolismo , Placa de Crecimiento/metabolismo , Minerales/uso terapéutico , Fosfatos , Vitamina D/metabolismo
4.
Endocrinology ; 163(2)2022 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-34878523

RESUMEN

Risk factors for nonalcoholic hepatic steatosis include obesity and vitamin D deficiency which commonly coexist. Thus, the role of vitamin D signaling in the prevention of hepatic steatosis in the absence of obesity or a "Western" high-fat diet is unclear. These studies were performed to address the role of the adipocyte vitamin D receptor (VDR) in the prevention of hepatic steatosis in mice fed a chow diet containing 5% fat by weight. Female mice with adipocyte VDR ablation (Adipoq-Cre; VDRflox/flox) exhibited a mild increase in weight gain at age 70 days, accompanied by an increase in visceral white adipose tissue (VAT) weight. While they did not exhibit evidence of hepatic inflammation or fibrosis, an increase in hepatic lipid content was observed. This was accompanied by an increase in the hepatic expression of genes involved in fatty acid transport and synthesis, as well as fatty acid oxidation. Markers of hepatic inflammation and fibrosis were unaffected by adipocyte VDR ablation. Consistent with the increase in VAT weight in the Adipoq-Cre; VDRflox/flox mice, higher levels of transcripts encoding adipogenesis-related genes were observed in VAT. In contrast to other models of impaired vitamin D signaling studied in the setting of a high-fat or "Western" diet, the Adipoq-Cre; VDRflox/flox mice do not exhibit hepatic inflammation or fibrosis. These findings suggest that the adipocyte VDR regulates hepatic lipid accumulation, but in the absence of obesity or a high-fat diet, is not required to prevent hepatic inflammation or fibrosis.


Asunto(s)
Dieta con Restricción de Grasas , Grasa Intraabdominal/metabolismo , Enfermedad del Hígado Graso no Alcohólico/fisiopatología , Receptores de Calcitriol/fisiología , Adipocitos/química , Animales , Femenino , Metabolismo de los Lípidos/fisiología , Hígado/metabolismo , Ratones , Ratones Noqueados , Enfermedad del Hígado Graso no Alcohólico/prevención & control , Receptores de Calcitriol/deficiencia , Receptores de Calcitriol/genética , Transducción de Señal/fisiología , Vitamina D/metabolismo
5.
J Bone Miner Res ; 36(8): 1510-1520, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33900666

RESUMEN

Bone marrow stromal cells (BMSCs) are multipotent cells that differentiate into cells of the osteogenic and adipogenic lineage. A striking inverse relationship between bone marrow adipose tissue (BMAT) and bone volume is seen in several conditions, suggesting that differentiation of BMSCs into bone marrow adipocytes diverts cells from the osteogenic lineage, thereby compromising the structural and mechanical properties of bone. Phosphate restriction of growing mice acutely decreases bone formation, blocks osteoblast differentiation and increases BMAT. Studies performed to evaluate the cellular and molecular basis for the effects of acute phosphate restriction demonstrate that it acutely increases 5' adenosine monophosphate-activated protein kinase (AMPK) phosphorylation and inhibits mammalian target of rapamycin complex 1 (mTORC1) signaling in osteoblasts. This is accompanied by decreased expression of Wnt10b in BMSCs. Phosphate restriction also promotes expression of the key adipogenic transcription factors, peroxisome proliferator-activated receptor γ (PPARγ) and CCAAT-enhancer binding protein α (CEBPα), in CXCL12 abundant reticular (CAR) cells, which represent undifferentiated BMSCs and are the main source of BMAT and osteoblasts in the adult murine skeleton. Consistent with this, lineage tracing studies reveal that the BMAT observed in phosphate-restricted mice is of CAR cell origin. To determine whether circumventing the decrease in mTORC1 signaling in maturing osteoblasts attenuates the osteoblast and BMAT phenotype, phosphate-restricted mice with OSX-CreERT2 -mediated haploinsufficiency of the mTORC1 inhibitor, TSC2, were generated. TSC2 haploinsufficiency in preosteoblasts/osteoblasts normalized bone volume and osteoblast number in phosphate-restricted mice and attenuated the increase in BMAT observed. Thus, acute phosphate restriction leads to decreased bone and increases BMAT by impairing mTORC1 signaling in osterix-expressing cells. © 2021 American Society for Bone and Mineral Research (ASBMR).


Asunto(s)
Médula Ósea , Fosfatos , Tejido Adiposo , Animales , Células de la Médula Ósea , Diferenciación Celular , Diana Mecanicista del Complejo 1 de la Rapamicina , Ratones , Osteoblastos , Osteogénesis
6.
J Bone Miner Res ; 36(12): 2317-2328, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34523743

RESUMEN

X-linked hypophosphatemia (XLH) is a hereditary musculoskeletal disorder caused by loss-of-function mutations in the PHEX gene. In XLH, increased circulating fibroblast growth factor 23 (FGF23) levels cause renal phosphate wasting and low concentrations of 1,25-dihydroxyvitamin D, leading to an early clinical manifestation of rickets. Importantly, hearing loss is commonly observed in XLH patients. We present here data from two XLH patients with marked conductive hearing loss. To decipher the underlying pathophysiology of hearing loss in XLH, we utilized the Hyp mouse model of XLH and measured auditory brain stem responses (ABRs) and distortion product otoacoustic emissions (DPOAEs) to functionally assess hearing. As evidenced by the increased ABR/DPOAE threshold shifts in the mid-frequency range, these measurements indicated a predominantly conductive hearing loss in Hyp mice compared to wild-type (WT) mice. Therefore, we carried out an in-depth histomorphometric and scanning electron microscopic analysis of the auditory ossicles. Quantitative backscattered electron imaging (qBEI) indicated a severe hypomineralization of the ossicles in Hyp mice, evidenced by lower calcium content (CaMean) and higher void volume (ie, porosity) compared to WT mice. Histologically, voids correlated with unmineralized bone (ie, osteoid), and the osteoid volume per bone volume (OV/BV) was markedly higher in Hyp mice than WT mice. The density of osteocyte lacunae was lower in Hyp mice than in WT mice, whereas osteocyte lacunae were enlarged. Taken together, our findings highlight the importance of ossicular mineralization for hearing conduction and point toward the potential benefit of improving mineralization to prevent hearing loss in XLH. © 2021 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).


Asunto(s)
Osículos del Oído/patología , Raquitismo Hipofosfatémico Familiar , Pérdida Auditiva Conductiva , Animales , Modelos Animales de Enfermedad , Raquitismo Hipofosfatémico Familiar/complicaciones , Raquitismo Hipofosfatémico Familiar/diagnóstico por imagen , Raquitismo Hipofosfatémico Familiar/genética , Factor-23 de Crecimiento de Fibroblastos , Humanos , Ratones , Endopeptidasa Neutra Reguladora de Fosfato PHEX
7.
PLoS One ; 14(9): e0222812, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31539407

RESUMEN

The growth inhibitory efficacy of methylseleninic acid (MSA) in prostate cancer cells has been documented extensively. However, our understanding of the immediate targets that are key to the growth inhibitory effects of MSA remains limited. Here, using multiple preclinical prostate cancer models, we demonstrated in vitro and in vivo that GDF15 is a most highly induced, immediate target of MSA. We further showed that knockdown of GDF15 mitigates MSA inhibition of cell proliferation and induction of apoptosis. Analysis of gene expression data from over 1000 primary and 200 metastatic prostate cancer samples revealed that GDF15 expression is decreased in metastatic prostate cancers compared to primary tumors and that lower GDF15 levels in primary tumors are associated with higher Gleason scores and shorter survival of the patients. Additionally, pathways that are negatively correlated with GDF15 levels in clinical samples are also negatively correlated with MSA treatment in cultured cells. Since most, if not all, of these pathways have been implicated in prostate cancer progression, suppressing their activities by inducing GDF15 is consistent with the anticancer effects of MSA in prostate cancer. Overall, this study provides support for GDF15 as an immediate target of MSA in prostate cancer cells.


Asunto(s)
Apoptosis/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Factor 15 de Diferenciación de Crecimiento/metabolismo , Compuestos de Organoselenio/farmacología , Neoplasias de la Próstata/metabolismo , Apoptosis/genética , Línea Celular Tumoral , Proliferación Celular/genética , Perfilación de la Expresión Génica/métodos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Factor 15 de Diferenciación de Crecimiento/genética , Humanos , Masculino , Células PC-3 , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/patología , Proteómica/métodos
8.
Oncogene ; 38(25): 4977-4989, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30820039

RESUMEN

Increased expression of the full-length androgen receptor (AR-FL) and AR splice variants (AR-Vs) drives the progression of castration-resistant prostate cancer (CRPC). The levels of AR-FL and AR-V transcripts are often tightly correlated in individual CRPC samples, yet our understanding of how their expression is co-regulated is limited. Here, we report a role of c-Myc in accounting for coordinated AR-FL and AR-V expression. Analysis of gene-expression data from 159 metastatic CRPC samples and 2142 primary prostate tumors showed that the level of c-Myc is positively correlated with that of individual AR isoforms. A striking positive correlation also exists between the activity of the c-Myc pathway and the level of individual AR isoforms, between the level of c-Myc and the activity of the AR pathway, and between the activities of the two pathways. Moreover, the c-Myc signature is highly enriched in tumors expressing high levels of AR, as is the AR signature in c-Myc-high-expressing tumors. Using shRNA knockdown, we confirmed c-Myc regulation of expression and activity of AR-FL and AR-Vs in cell models and a patient-derived xenograft model. Mechanistically, c-Myc promotes the transcription of the AR gene and enhances the stability of the AR-FL and AR-V proteins without altering AR RNA splicing. Importantly, inhibiting c-Myc sensitizes enzalutamide-resistant cells to growth inhibition by enzalutamide. Overall, this study highlights a critical role of c-Myc in regulating the coordinated expression of AR-FL and AR-Vs that is commonly observed in CRPC and suggests the utility of targeting c-Myc as an adjuvant to AR-directed therapy.


Asunto(s)
Adenocarcinoma/genética , Neoplasias de la Próstata Resistentes a la Castración/genética , Proteínas Proto-Oncogénicas c-myc/fisiología , Receptores Androgénicos/genética , Adenocarcinoma/patología , Empalme Alternativo/genética , Animales , Células Cultivadas , Regulación Neoplásica de la Expresión Génica , Células HEK293 , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones SCID , Neoplasias de la Próstata Resistentes a la Castración/patología , Isoformas de Proteínas/genética
9.
Oncogene ; 38(45): 7060-7072, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31409897

RESUMEN

Deregulated expression of circular RNAs (circRNAs) is associated with various human diseases, including many types of cancer. Despite their growing links to cancer, there has been limited characterization of circRNAs in metastatic castration-resistant prostate cancer, the major cause of prostate cancer mortality. Here, through the analysis of an exome-capture RNA-seq dataset from 47 metastatic castration-resistant prostate cancer samples and ribodepletion and RNase R RNA-sequencing of patient-derived xenografts (PDXs) and cell models, we identified 13 circRNAs generated from the key prostate cancer driver gene-androgen receptor (AR). We validated and characterized the top four most abundant, clinically relevant AR circRNAs. Expression of these AR circRNAs was upregulated during castration-resistant progression of PDXs. The upregulation was not due to global increase of circRNA formation in these tumors. Instead, the levels of AR circRNAs correlated strongly with that of the linear AR transcripts (both AR and AR variants) in clinical samples and PDXs, indicating a transcriptional mechanism of regulation. In cultured cells, androgen suppressed the expression of these AR circRNAs and the linear AR transcripts, and the suppression was attenuated by an antiandrogen. Using nuclear/cytoplasmic fractionation and RNA in-situ hybridization assays, we demonstrated predominant cytoplasmic localization of these AR circRNAs, indicating likely cytoplasmic functions. Overall, this is the first comprehensive characterization of circRNAs arising from the AR gene. With greater resistance to exoribonuclease compared to the linear AR transcripts and detectability of AR circRNAs in patient plasma, these AR circRNAs may serve as surrogate circulating markers for AR/AR-variant expression and castration-resistant prostate cancer progression.


Asunto(s)
Regulación Neoplásica de la Expresión Génica , Neoplasias de la Próstata Resistentes a la Castración/genética , Neoplasias de la Próstata Resistentes a la Castración/patología , ARN Circular/genética , Receptores Androgénicos/genética , Animales , Humanos , Masculino , Ratones SCID , Isoformas de Proteínas , Receptores Androgénicos/clasificación , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA