RESUMEN
Wood delignification and densification enable the production of high strength and/or transparent wood materials with exceptional properties. However, processing needs to be more sustainable and besides the chemical delignification treatments, energy intense hot-pressing calls for alternative approaches. Here, this study shows that additional softening of delignified wood via a mild swelling process using an ionic liquid-water mixture enables the densification of tube-line wood cells into layer-by-layer sheet structures without hot-pressing. The natural capillary force induces self-densification in a simple drying process resulting in a transparent wood film. The as-prepared films with ≈150 µm thickness possess an optical transmittance ≈70%, while maintaining optical haze >95%. Due to the densely packed sheet structure with a large interfacial area, the reassembled wood film is fivefold stronger and stiffer than the delignified wood in fiber direction. Owing to a low density, the specific tensile strength and elastic modulus are as high as 282 MPa cm3 g-1 and 31 GPa cm3 g-1. A facile and highly energy efficient wood nanotechnology approach are demonstrated toward more sustainable materials and processes by directly converting delignified wood into transparent wood omitting polymeric matrix infiltration or mechanical pressing.
RESUMEN
The origin of complex worker-caste systems in ants perplexed Darwin1 and has remained an enduring problem for evolutionary and developmental biology2-6. Ants originated approximately 150 million years ago, and produce colonies with winged queen and male castes as well as a wingless worker caste7. In the hyperdiverse genus Pheidole, the wingless worker caste has evolved into two morphologically distinct subcastes-small-headed minor workers and large-headed soldiers8. The wings of queens and males develop from populations of cells in larvae that are called wing imaginal discs7. Although minor workers and soldiers are wingless, vestiges or rudiments of wing imaginal discs appear transiently during soldier development7,9-11. Such rudimentary traits are phylogenetically widespread and are primarily used as evidence of common descent, yet their functional importance remains equivocal1,12-14. Here we show that the growth of rudimentary wing discs is necessary for regulating allometry-disproportionate scaling-between head and body size to generate large-headed soldiers in the genus Pheidole. We also show that Pheidole colonies have evolved the capacity to socially regulate the growth of rudimentary wing discs to control worker subcaste determination, which allows these colonies to maintain the ratio of minor workers to soldiers. Finally, we provide comparative and experimental evidence that suggests that rudimentary wing discs have facilitated the parallel evolution of complex worker-caste systems across the ants. More generally, rudimentary organs may unexpectedly acquire novel regulatory functions during development to facilitate adaptive evolution.
Asunto(s)
Hormigas , Evolución Biológica , Tamaño Corporal , Alas de Animales , Animales , Femenino , Masculino , Hormigas/anatomía & histología , Hormigas/clasificación , Hormigas/crecimiento & desarrollo , Hormigas/fisiología , Cabeza/anatomía & histología , Cabeza/crecimiento & desarrollo , Cabeza/fisiología , Larva/anatomía & histología , Larva/crecimiento & desarrollo , Alas de Animales/anatomía & histología , Alas de Animales/crecimiento & desarrollo , Alas de Animales/fisiologíaRESUMEN
The growth of imaginal discs in holometabolous insects is coordinated with larval growth to ensure the symmetrical and proportional development of the adult appendages. In ants, the differential growth of these discs generates distinct castes-the winged male and queen castes and the wingless worker caste. In the hyperdiverse ant genus Pheidole, the worker caste is composed of two morphologically distinct subcastes: small-headed minor workers and larger, big-headed, soldiers. Although these worker subcastes are completely wingless, soldier larvae develop rudimentary forewing discs that function in generating the disproportionate head-to-body scaling and size of soldiers. It remains unclear, however, how rudimentary forewing discs in soldier larvae are coordinated with other imaginal discs. Here we show, using quantitative nano-CT imaging and three-dimensional analyses, that the increase in the volume of the soldier rudimentary forewing discs is coordinated with larval size as well as with the increase in the volume of the leg and eye-antennal (head) discs. However, relative to larval size, we found that when the rudimentary forewing discs appear during the last larval instar, they are relatively smaller but increase in volume faster than that of the head (eye-antennal) and leg discs. These findings show that the rudimentary wing disc in soldier larvae has evolved novel patterns of inter-organ coordination as compared with other insects to generate the big-headed soldier caste in Pheidole. More generally, our study raises the possibility that novel patterns of inter-organ coordination are a general feature of rudimentary organs that acquire novel regulatory functions during development and evolution.
Asunto(s)
Hormigas , Discos Imaginales/crecimiento & desarrollo , Animales , Hormigas/anatomía & histología , Hormigas/crecimiento & desarrollo , Larva/anatomía & histología , Larva/crecimiento & desarrollo , Masculino , Morfogénesis , Nanotecnología , Tomografía Computarizada por Rayos X , Alas de AnimalesRESUMEN
The eye primordium arises as a lateral outgrowth of the forebrain, with a transient fissure on the inferior side of the optic cup providing an entry point for developing blood vessels. Incomplete closure of the inferior ocular fissure results in coloboma, a disease characterized by gaps in the inferior eye and recognized as a significant cause of pediatric blindness. Here, we identify eight patients with defects in tissues of the superior eye, a congenital disorder that we term superior coloboma. The embryonic origin of superior coloboma could not be explained by conventional models of eye development, leading us to reanalyze morphogenesis of the dorsal eye. Our studies revealed the presence of the superior ocular sulcus (SOS), a transient division of the dorsal eye conserved across fish, chick, and mouse. Exome sequencing of superior coloboma patients identified rare variants in a Bone Morphogenetic Protein (Bmp) receptor (BMPR1A) and T-box transcription factor (TBX2). Consistent with this, we find sulcus closure defects in zebrafish lacking Bmp signaling or Tbx2b. In addition, loss of dorsal ocular Bmp is rescued by concomitant suppression of the ventral-specific Hedgehog pathway, arguing that sulcus closure is dependent on dorsal-ventral eye patterning cues. The superior ocular sulcus acts as a conduit for blood vessels, with altered sulcus closure resulting in inappropriate connections between the hyaloid and superficial vascular systems. Together, our findings explain the existence of superior coloboma, a congenital ocular anomaly resulting from aberrant morphogenesis of a developmental structure.
Asunto(s)
Receptores de Proteínas Morfogenéticas Óseas de Tipo 1/genética , Coloboma/embriología , Coloboma/genética , Citocromo P-450 CYP1B1/genética , Ojo/embriología , Adulto , Animales , Animales Modificados Genéticamente , Receptores de Proteínas Morfogenéticas Óseas de Tipo 1/metabolismo , Embrión de Pollo , Embrión no Mamífero , Factor 6 de Diferenciación de Crecimiento/genética , Factor 6 de Diferenciación de Crecimiento/metabolismo , Humanos , Lactante , Ratones , Proteínas de Dominio T Box/genética , Proteínas de Dominio T Box/metabolismo , Pez Cebra/embriología , Pez Cebra/genética , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismoRESUMEN
Compliant materials are indispensable for many emerging soft robotics applications. Hence, concerns regarding sustainability and end-of-life options for these materials are growing, given that they are predominantly petroleum-based and non-recyclable. Despite efforts to explore alternative bio-derived soft materials like gelatin, they frequently fall short in delivering the mechanical performance required for soft actuating systems. To address this issue, we reinforced a compliant and transparent gelatin-glycerol matrix with structure-retained delignified wood, resulting in a flexible and entirely biobased composite (DW-flex). This DW-flex composite exhibits highly anisotropic mechanical behavior, possessing higher strength and stiffness in the fiber direction and high deformability perpendicular to it. Implementing a distinct anisotropy in otherwise isotropic soft materials unlocks new possibilities for more complex movement patterns. To demonstrate the capability and potential of DW-flex, we built and modeled a fin ray-inspired gripper finger, which deforms based on a twist-bending-coupled motion that is tailorable by adjusting the fiber direction. Moreover, we designed a demonstrator for a proof-of-concept suitable for gripping a soft object with a complex shape, i.e., a strawberry. We show that this composite is entirely biodegradable in soil, enabling more sustainable approaches for soft actuators in robotics applications.
RESUMEN
Delignified wood (DW) offers a versatile platform for the manufacturing of composites, with material properties ranging from stiff to soft and flexible by preserving the preferential fiber directionality of natural wood through a structure-retaining production process. This study presents a facile method for fabricating anisotropic and mechanically tunable DW-hydrogel composites. These composites were produced by infiltrating delignified spruce wood with an aqueous gelatin solution followed by chemical crosslinking. The mechanical properties could be modulated across a broad strength and stiffness range (1.2-18.3 MPa and 170-1455 MPa, respectively) by varying the crosslinking time. The diffusion-led crosslinking further allowed to manufacture mechanically graded structures. The resulting uniaxial, tubular structure of the anisotropic DW-hydrogel composite enabled the alignment of murine fibroblasts in vitro, which could be utilized in future studies on potential applications in tissue engineering.
RESUMEN
Delignified wood (DW) represents a promising bio-based fibrous material as a reinforcing component in high-performance composites. These cellulose composites possess excellent strength and stiffness in the dry state, which are significantly higher than for natural wood. However, in the wet state, a penetrating water layer enters the intercellular regions and disrupts the stress transfer mechanisms between cell fibers in fully DW. This water layer initially facilitates complex shaping of the material but imparts DW composites with very low wet stiffness and strength. Therefore, a sufficient stress transfer in the wet state necessitates a resin impregnation of these intercellular regions, establishing bonding mechanisms between adjacent fibers. Here, we utilize a water-based dimethyloldihydroxyethylene urea thermosetting matrix (DMDHEU) and compare it with a non-water-based epoxy matrix. We infiltrate these resins into DW and investigate their spatial distribution by scanning electron microscopy, atomic force microscopy, and confocal Raman spectroscopy. The water-based resin impregnates the intercellular areas and generates an artificial compound middle lamella, while the epoxy infiltrates only the cell lumina of the dry DW. Tensile tests in the dry and wet states show that the DMDHEU matrix infiltration of the intercellular areas and the cell wall results in a higher tensile strength and stiffness compared to the epoxy resin. Here, the artificial compound middle lamella made of DMDHEU bonds adjacent fibers together and substantially increases the composites' wet strength. This study elucidates the importance of the interaction and spatial distribution of the resin system within the DW structure to improve mechanical properties, particularly in the wet state.
Asunto(s)
Resinas Epoxi , Madera , Celulosa/química , Resinas Epoxi/química , Microscopía Electrónica de Rastreo , Resistencia a la TracciónRESUMEN
With a world population estimated at 10 billion people by 2050, the challenge to secure healthy and safe food is evident. Seaweed is a potential answer to this challenge. Expanding the use of seaweed in food systems requires an emphasis on safe practices to avoid adverse human health effects after consumption and irreversible damage to marine ecosystems. This study aims to evaluate relevant food safety and environmental safety hazards, monitoring measures, and mitigation strategies in the seaweed sector. For this study, a literature review, survey (n = 36), and interviews (n = 12) were conducted to identify hazards. The review and interviews aimed at pinpointing monitoring measures and mitigation strategies applied, while the survey revealed data gaps and further actions needed for the sector. Relevant food safety hazards include (inorganic) arsenic, iodine, and heavy metals, among others, such as pathogenic bacteria, while environmental hazards include environmental pathogens and parasites introduced into the ecosystem by domesticated seaweed, among others. Measures applied aim at preventing or mitigating hazards through good hygienic or manufacturing practices, food safety procedures or protocols, or pre-site farm selection. Although the future needs of the seaweed sector vary, for some, harmonized advice and protocols that align with a changing food system and hazard knowledge development as well as information on the benefits of seaweed and regulating climate and water quality may help.
RESUMEN
Urbanization transforms environments in ways that alter biological evolution. We examined whether urban environmental change drives parallel evolution by sampling 110,019 white clover plants from 6169 populations in 160 cities globally. Plants were assayed for a Mendelian antiherbivore defense that also affects tolerance to abiotic stressors. Urban-rural gradients were associated with the evolution of clines in defense in 47% of cities throughout the world. Variation in the strength of clines was explained by environmental changes in drought stress and vegetation cover that varied among cities. Sequencing 2074 genomes from 26 cities revealed that the evolution of urban-rural clines was best explained by adaptive evolution, but the degree of parallel adaptation varied among cities. Our results demonstrate that urbanization leads to adaptation at a global scale.
Asunto(s)
Adaptación Fisiológica , Evolución Biológica , Ecosistema , Trifolium/fisiología , Urbanización , Ciudades , Genes de Plantas , Genoma de Planta , Cianuro de Hidrógeno/metabolismo , Población Rural , Trifolium/genéticaRESUMEN
The vertebrate hindbrain is composed of a series of lineage-restricted segments termed rhombomeres. Segment-specific gene expression drives unique programs of neuronal differentiation. Two critical embryonic signaling pathways, Fibroblast Growth Factor (FGF) and Retinoic Acid (RA), regulate early embryonic rhombomere patterning. The earliest expressed hox genes, hoxb1b and hoxb1a in zebrafish, are logical candidates for establishing signaling networks that specify segmental identity. We sought to determine the mechanism by which hox genes regulate hindbrain patterning in zebrafish. We demonstrate that hoxb1a regulates r4-specific patterning, while hoxb1b regulates rhombomere segmentation and size. Hoxb1a and hoxb1b redundantly regulate vhnf1 expression. Loss of hoxb1b together with pbx4 reverts the hindbrain to a groundstate identity, demonstrating the importance of hox genes in patterning nearly the entire hindbrain, and a key requirement for Pbx in this process. Additionally, we provide evidence that while pbx genes regulate RA signaling, hoxb1b regulates hindbrain identity through complex regulation of FGF signaling.