Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Development ; 149(18)2022 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-35993297

RESUMEN

Round spermatid injection (ROSI) results in a lower birth rate than intracytoplasmic sperm injection, which has hampered its clinical application. Inefficient development of ROSI embryos has been attributed to epigenetic abnormalities. However, the chromatin-based mechanism that underpins the low birth rate in ROSI remains to be determined. Here, we show that a repressive histone mark, H3K27me3, persists from mouse round spermatids into zygotes in ROSI and that round spermatid-derived H3K27me3 is associated with less accessible chromatin and impaired gene expression in ROSI embryos. These loci are initially marked by H3K27me3 but undergo histone modification remodelling in spermiogenesis, resulting in reduced H3K27me3 in normal spermatozoa. Therefore, the absence of epigenetic remodelling, presumably mediated by histone turnover during spermiogenesis, leads to dysregulation of chromatin accessibility and transcription in ROSI embryos. Thus, our results unveil a molecular logic, in which chromatin states in round spermatids impinge on chromatin accessibility and transcription in ROSI embryos, highlighting the importance of epigenetic remodelling during spermiogenesis in successful reproduction.


Asunto(s)
Histonas , Espermátides , Animales , Cromatina/genética , Cromatina/metabolismo , Histonas/genética , Histonas/metabolismo , Masculino , Ratones , Oocitos/metabolismo , Herencia Paterna , Semen/metabolismo , Espermátides/metabolismo
2.
Development ; 148(19)2021 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-34559199

RESUMEN

The therian-specific gene paternally expressed 10 (Peg10) plays an essential role in placenta formation: Peg10 knockout mice exhibit early embryonic lethality as a result of severe placental defects. The PEG10 protein exhibits homology with long terminal repeat (LTR) retrotransposon GAG and POL proteins; therefore, we generated mice harboring a mutation in the highly conserved viral aspartic protease motif in the POL-like region of PEG10 because this motif is essential for the life cycle of LTR retrotransposons/retroviruses. Intriguingly, frequent perinatal lethality, not early embryonic lethality, was observed with fetal and placental growth retardation starting mid-gestation. In the mutant placentas, severe defects were observed in the fetal vasculature, where PEG10 is expressed in the three trophoblast cell layers that surround fetal capillary endothelial cells. Thus, Peg10 has essential roles, not only in early placenta formation, but also in placental vasculature maintenance from mid- to late-gestation. This implies that along the feto-maternal placenta interface an interaction occurs between two retrovirus-derived genes, Peg10 and retrotransposon Gag like 1 (Rtl1, also called Peg11), that is essential for the maintenance of fetal capillary endothelial cells.


Asunto(s)
Proteínas Reguladoras de la Apoptosis/metabolismo , Capilares/metabolismo , Proteínas de Unión al ADN/metabolismo , Placenta/irrigación sanguínea , Proteínas de Unión al ARN/metabolismo , Secuencias de Aminoácidos , Animales , Proteínas Reguladoras de la Apoptosis/química , Capilares/embriología , Proteínas de Unión al ADN/química , Células Endoteliales/metabolismo , Endotelio Vascular/citología , Endotelio Vascular/metabolismo , Femenino , Ratones , Placenta/embriología , Embarazo , Proteínas Gestacionales/química , Proteínas Gestacionales/metabolismo , Proteínas de Unión al ARN/química
3.
Proc Natl Acad Sci U S A ; 116(42): 21047-21053, 2019 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-31570606

RESUMEN

The placenta is critical in mammalian embryonic development because the embryo's supply of nutrients, including amino acids, depends solely on mother-to-embryo transport through it. However, the molecular mechanisms underlying this amino acid supply are poorly understood. In this study, we focused on system A amino acid transporters Slc38a1/SNAT1, Slc38a2/SNAT2, and Slc38a4/SNAT4, which carry neutral, short-side-chain amino acids, to determine their involvement in placental or embryonic development. A triple-target CRISPR screen identified Slc38a4/SNAT4 as the critical amino acid transporter for placental development in mice. We established mouse lines from the CRISPR founders with large deletions in Slc38a4 and found that, consistent with the imprinted paternal expression of Slc38a4/SNAT4 in the placenta, paternal knockout (KO) but not maternal KO of Slc38a4/SNAT4 caused placental hypoplasia associated with reduced fetal weight. Immunostaining revealed that SNAT4 was widely expressed in differentiating cytotrophoblasts and maturing trophoblasts at the maternal-fetal interface. A blood metabolome analysis revealed that amino acid concentrations were globally reduced in Slc38a4/SNAT4 mutant embryos. These results indicated that SNAT4-mediated amino acid transport in mice plays a major role in placental and embryonic development. Given that expression of Slc38a4 in the placenta is conserved in other species, our Slc38a4/SNAT4 mutant mice could be a promising model for the analysis of placental defects leading to intrauterine growth restriction in mammals.


Asunto(s)
Sistema de Transporte de Aminoácidos A/metabolismo , Retardo del Crecimiento Fetal/metabolismo , Retardo del Crecimiento Fetal/patología , Placenta/metabolismo , Placenta/patología , Útero/metabolismo , Útero/patología , Sistemas de Transporte de Aminoácidos/metabolismo , Aminoácidos/metabolismo , Animales , Femenino , Ratones , Placentación/fisiología , Embarazo , Trofoblastos/metabolismo , Trofoblastos/patología
4.
EMBO Rep ; 20(12): e48251, 2019 12 05.
Artículo en Inglés | MEDLINE | ID: mdl-31657143

RESUMEN

Formation of primordial follicles is a fundamental, early process in mammalian oogenesis. However, little is known about the underlying mechanisms. We herein report that the RNA-binding proteins ELAVL2 and DDX6 are indispensable for the formation of quiescent primordial follicles in mouse ovaries. We show that Elavl2 knockout females are infertile due to defective primordial follicle formation. ELAVL2 associates with mRNAs encoding components of P-bodies (cytoplasmic RNP granules involved in the decay and storage of RNA) and directs the assembly of P-body-like granules by promoting the translation of DDX6 in oocytes prior to the formation of primordial follicles. Deletion of Ddx6 disturbs the assembly of P-body-like granules and severely impairs the formation of primordial follicles, indicating the potential importance of P-body-like granules in the formation of primordial follicles. Furthermore, Ddx6-deficient oocytes are abnormally enlarged due to misregulated PI3K-AKT signaling. Our data reveal that an ELAVL2-directed post-transcriptional network is essential for the formation of quiescent primordial follicles.


Asunto(s)
Proteína 2 Similar a ELAV/metabolismo , Redes Reguladoras de Genes , Infertilidad Femenina/genética , Folículo Ovárico/metabolismo , Animales , Células Cultivadas , ARN Helicasas DEAD-box/genética , ARN Helicasas DEAD-box/metabolismo , Proteína 2 Similar a ELAV/genética , Femenino , Ratones , Oogénesis , Folículo Ovárico/citología , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas/metabolismo
5.
Proc Natl Acad Sci U S A ; 114(23): 5988-5993, 2017 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-28533361

RESUMEN

If humans ever start to live permanently in space, assisted reproductive technology using preserved spermatozoa will be important for producing offspring; however, radiation on the International Space Station (ISS) is more than 100 times stronger than that on Earth, and irradiation causes DNA damage in cells and gametes. Here we examined the effect of space radiation on freeze-dried mouse spermatozoa held on the ISS for 9 mo at -95 °C, with launch and recovery at room temperature. DNA damage to the spermatozoa and male pronuclei was slightly increased, but the fertilization and birth rates were similar to those of controls. Next-generation sequencing showed only minor genomic differences between offspring derived from space-preserved spermatozoa and controls, and all offspring grew to adulthood and had normal fertility. Thus, we demonstrate that although space radiation can damage sperm DNA, it does not affect the production of viable offspring after at least 9 mo of storage on the ISS.


Asunto(s)
Daño del ADN/efectos de la radiación , Desarrollo Embrionario/efectos de la radiación , Espermatozoides/efectos de la radiación , Animales , Transferencia de Embrión/métodos , Transferencia de Embrión/mortalidad , Femenino , Liofilización/métodos , Células Germinativas/efectos de la radiación , Tamaño de la Camada/efectos de la radiación , Masculino , Ratones , Oocitos , Técnicas Reproductivas Asistidas , Vuelo Espacial , Inyecciones de Esperma Intracitoplasmáticas/métodos , Espermatozoides/fisiología
6.
Development ; 143(16): 2958-64, 2016 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-27471261

RESUMEN

Pluripotent stem cells can be classified into two distinct states, naïve and primed, which show different degrees of potency. One difficulty in stem cell research is the inability to distinguish these states in live cells. Studies on female mice have shown that reactivation of inactive X chromosomes occurs in the naïve state, while one of the X chromosomes is inactivated in the primed state. Therefore, we aimed to distinguish the two states by monitoring X chromosome reactivation. Thus far, X chromosome reactivation has been analysed using fixed cells; here, we inserted different fluorescent reporter gene cassettes (mCherry and eGFP) into each X chromosome. Using these knock-in 'Momiji' mice, we detected X chromosome reactivation accurately in live embryos, and confirmed that the pluripotent states of embryos were stable ex vivo, as represented by embryonic and epiblast stem cells in terms of X chromosome reactivation. Thus, Momiji mice provide a simple and accurate method for identifying stem cell status based on X chromosome reactivation.


Asunto(s)
Embrión de Mamíferos/metabolismo , Células Madre Pluripotentes/metabolismo , Inactivación del Cromosoma X/fisiología , Cromosoma X/metabolismo , Animales , Femenino , Estratos Germinativos/citología , Estratos Germinativos/metabolismo , Humanos , Inmunohistoquímica , Hibridación Fluorescente in Situ , Ratones , Ratones Mutantes , Fosfoglicerato Quinasa/genética , Fosfoglicerato Quinasa/metabolismo , Células Madre Pluripotentes/citología , Cromosoma X/genética , Inactivación del Cromosoma X/genética
7.
Int J Syst Evol Microbiol ; 69(9): 2723-2728, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31232683

RESUMEN

An actinomycete strain, TKZ-21T, was isolated from a freshwater alga (Chetophoraceae) collected from the Takizawa River, Yamanashi, Japan, and examined using a polyphasic taxonomic approach. Cells were Gram-stain positive, aerobic, non-sporulating, motile, and coccoid or short rod-shaped. The strain grew in the presence of 0-4 % (w/v) NaCl, between pH 6-9.4, and over a temperature range of 15-40 °C, with optimum growth at 30 °C. The peptidoglycan type of strain TKZ-21T was A4ß, containing l-ornithine as diagnostic diamino acid and d-glutamic acid as the interpeptide bridge. The predominant menaquinone was MK-9(H4). The polar lipids were diphosphatidylglycerol, phosphatidylglycerol, ninhydrin-positive glycolipid, and unidentified phospholipids. The major cellular fatty acids were anteiso-C15 : 0 and anteiso-C17 : 0, and the DNA G+C content was 75.6 mol%. On the basis of 16S rRNA gene sequence analysis, strain TKZ-21T was closely related to Cellulomonas fimi (98.5 % sequence similarity) and Cellulomonas biazotea (98.3 %). The genome orthoANI value between strain TKZ-21T and C. biazotea and C. fimi were 84.7 and 84.2 %, respectively. On the basis of fatty acid and MALDI-TOF MS profile analysis, phylogenetic analyses, genomic analysis, and phenotypic data, it is proposed that the isolate be classified as a representative of a novel species of the genus Cellulomonas, with the name Cellulomonas algicola sp. nov. The type strain is TKZ-21T (=NBRC 112905T=TBRC 8129T).


Asunto(s)
Cellulomonas/clasificación , Chlorophyceae/microbiología , Filogenia , Técnicas de Tipificación Bacteriana , Composición de Base , Cellulomonas/aislamiento & purificación , ADN Bacteriano/genética , Ácidos Grasos/química , Glucolípidos/química , Japón , Peptidoglicano/química , Fosfolípidos/química , ARN Ribosómico 16S/genética , Ríos , Análisis de Secuencia de ADN , Vitamina K 2/análogos & derivados , Vitamina K 2/química
8.
Nucleic Acids Res ; 45(4): e24, 2017 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-28204635

RESUMEN

Since the discovery of oxidative demethylation of methylcytosine (mC) by Tet enzymes, an analytical method has been urgently needed that would enable the identification of mC and hydroxymethylcytosine (hmC) at the single base resolution level, because their roles in gene regulation are quite different from each other. However, the bisulfite sequencing method, the gold standard for DNA methylation analysis at present, does not distinguish them. Recently reported alternative methods, such as oxBS-seq and TAB-seq, are not even capable of determining mC and hmC simultaneously. Here, we report a novel method for the direct identification of mC, hmC and unmodified cytosine (C) at a single base resolution. We named this method the Enzyme-assisted Identification of Genome Modification Assay (EnIGMA), and it was demonstrated to indeed have a highly efficient and reliable analytic capacity for distinguishing them. We also successfully applied this novel method to the analysis of the maintenance of the DNA methylation status of imprinted H19-DMR. Importantly, hydroxymethylation plays an ambivalent role in the maintenance of the genome imprinting memory in parental genomes essential for normal development, shedding new light on the epigenetic regulation in ES cells.


Asunto(s)
5-Metilcitosina/análogos & derivados , 5-Metilcitosina/análisis , Animales , ADN (Citosina-5-)-Metiltransferasa 1 , Genoma , Genómica , Humanos , Ratones , Ratones Endogámicos C57BL , ARN Largo no Codificante/genética , Análisis de Secuencia de ADN
9.
Development ; 141(20): 3842-7, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25252944

RESUMEN

The recent successful establishment of mouse parthenogenetic haploid embryonic stem cells (phESCs) and androgenetic haploid ESCs (ahESCs) has stimulated genetic research not only in vitro but also in vivo because of the germline competence of these cell lines. However, it is difficult to maintain the haploid status over time without a frequent sorting of the G1 phase haploid ESCs by fluorescence-activated cell sorting (FACS) at short intervals, because haploid cells tend to readily self-diploidize. To overcome this spontaneous diploid conversion, we developed a phESC culture condition using a small molecular inhibitor of Wee1 kinase to regulate the cell cycle by accelerating the G2/M phase transition and preventing re-entry into extra G1/S phase. Here, we demonstrate that, under this condition, phESCs maintained the haploid status for at least 4 weeks without the need for FACS. This method will greatly enhance the availability of these cells for genetic screening.


Asunto(s)
Células Madre Embrionarias/citología , Puntos de Control de la Fase G2 del Ciclo Celular , Regulación del Desarrollo de la Expresión Génica , Haploidia , Animales , División Celular , Línea Celular , Separación Celular , Epigénesis Genética , Citometría de Flujo , Fase G2 , Proteínas Fluorescentes Verdes/química , Ratones , Ratones Endogámicos C57BL , Ratones Desnudos , Trasplante de Neoplasias , Hibridación de Ácido Nucleico , Análisis de Secuencia por Matrices de Oligonucleótidos , Oocitos/citología , Partenogénesis
11.
Nat Genet ; 38(1): 101-6, 2006 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-16341224

RESUMEN

By comparing mammalian genomes, we and others have identified actively transcribed Ty3/gypsy retrotransposon-derived genes with highly conserved DNA sequences and insertion sites. To elucidate the functions of evolutionarily conserved retrotransposon-derived genes in mammalian development, we produced mice that lack one of these genes, Peg10 (paternally expressed 10), which is a paternally expressed imprinted gene on mouse proximal chromosome 6. The Peg10 knockout mice showed early embryonic lethality owing to defects in the placenta. This indicates that Peg10 is critical for mouse parthenogenetic development and provides the first direct evidence of an essential role of an evolutionarily conserved retrotransposon-derived gene in mammalian development.


Asunto(s)
Pérdida del Embrión/genética , Impresión Genómica , Proteínas Nucleares/genética , Placenta/patología , Retroelementos , Factores de Transcripción/genética , Animales , Proteínas Reguladoras de la Apoptosis , Metilación de ADN , Proteínas de Unión al ADN , Femenino , Retardo del Crecimiento Fetal/genética , Eliminación de Gen , Regulación del Desarrollo de la Expresión Génica , Ratones , Ratones Noqueados , Proteínas Nucleares/metabolismo , Partenogénesis/genética , Placenta/fisiología , Embarazo , Proteínas de Unión al ARN , Factores de Transcripción/metabolismo
12.
Biol Reprod ; 91(5): 120, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25232016

RESUMEN

In mice, the establishment of paternal genomic imprinting in male germ cells starts at midgestation, as suggested by DNA methylation analyses of differentially methylated regions (DMRs). However, this information is based on averages from mixed populations of germ cells, and the DNA methylation pattern might not always provide a full representation of imprinting status. To obtain more detailed information on the establishment of paternal imprinting, single prospermatogonia at Embryonic Days 15.5 (E15.5), E16.5, and E17.5 and at Day 0.5 after birth were cloned using nuclear transfer; previous reports suggested that cloned embryos reflected the donor's genomic imprinting status. Then, the resultant fetuses (E9.5) were analyzed for the DNA methylation pattern of three paternal DMRs (IG-DMR, H19 DMR, and Rasgrf1 DMR) and the expression pattern of imprinted genes therein. The overall data indicated that establishment of genomic imprinting in all paternally imprinted regions was completed by E17.5, following a short intermediate period at E16.5. Furthermore, comparison between the methylation status of DMRs and the expression profiles of imprinted genes suggested that methylation of the IG-DMR, but not the H19 DMR, solely governed the control of its imprinted gene cluster. The Rasgrf1 DMR seemed to be imprinted later than the other two genes. We also found that the methylation status of the Gtl2 DMR, the secondary DMR that acquires DNA methylation after fertilization, was likely to follow the methylation status of the upstream IG-DMR. Thus, the systematic analyses of prospermatogonium-derived embryos provided additional important information on the establishment of paternal imprinting.


Asunto(s)
Células Madre Adultas/metabolismo , Padre , Impresión Genómica , Técnicas de Transferencia Nuclear , Células Madre Adultas/citología , Animales , Células Cultivadas , Clonación de Organismos/métodos , Metilación de ADN , Embrión de Mamíferos , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos DBA , Ratones Endogámicos ICR
13.
Proc Natl Acad Sci U S A ; 108(51): 20621-6, 2011 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-22065773

RESUMEN

Cloning mammals by somatic cell nuclear transfer (SCNT) is highly inefficient. Most SCNT-generated embryos die after implantation because of unidentified, complex epigenetic errors in the process of postimplantation embryonic development. Here we identify the most upstream level of dysfunction leading to impaired development of clones by using RNAi against Xist, a gene responsible for X chromosome inactivation (XCI). A prior injection of Xist-specific siRNA into reconstructed oocytes efficiently corrected SCNT-specific aberrant Xist expression at the morula stage, but failed to do so thereafter at the blastocyst stage. However, we found that shortly after implantation, this aberrant XCI status in cloned embryos had been corrected autonomously in both embryonic and extraembryonic tissues, probably through a newly established XCI control for postimplantation embryos. Embryo transfer experiments revealed that siRNA-treated embryos showed 10 times higher survival than controls as early as embryonic day 5.5 and this high survival persisted until term, resulting in a remarkable improvement in cloning efficiency (12% vs. 1% in controls). Importantly, unlike control clones, these Xist-siRNA clones at birth showed only a limited dysregulation of their gene expression, indicating that correction of Xist expression in preimplantation embryos had a long-term effect on their postnatal normality. Thus, contrary to the general assumption, our results suggest that the fate of cloned embryos is determined almost exclusively before implantation by their XCI status. Furthermore, our strategy provides a promising breakthrough for mammalian SCNT cloning, because RNAi treatment of oocytes is readily applicable to most mammal species.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Interferencia de ARN , ARN no Traducido/metabolismo , Animales , Blastocisto/citología , Clonación Molecular , Desarrollo Embrionario , Ácidos Hidroxámicos/farmacología , Hibridación Fluorescente in Situ , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos DBA , Mórula/metabolismo , Oocitos/citología , ARN/metabolismo , ARN Largo no Codificante , ARN Interferente Pequeño/metabolismo , Factores de Tiempo
14.
Front Aging ; 5: 1331448, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38751649

RESUMEN

Obesity and ageing are the most important risk factors for sleep apnoea syndrome (SAS); however, the role of body mass index (BMI) on sleep status in healthy older adults is unclear. To explore sleep parameters according to BMI among active older adults, we cross-sectionally examined the relationship between sleep-related parameters and BMI in 32 Japanese adults aged from 83 to 95 years without long-term care who were unaware of having SAS. Correlation and linear regression analyses were performed. Moderate or severe SAS prevalence was high in both those with low (68.8%) and high (68.8%) BMI. A higher increase in apnoea-hypopnoea index (AHI) was negatively correlated with sleep depth in the high-BMI group. In the low-BMI group, the number of awakenings and age were positively correlated with AHI. Older adults may have SAS regardless of their BMI, and the sleep status of patients with SAS may vary by BMI.

15.
J Hum Genet ; 58(7): 416-20, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23739123

RESUMEN

Embryonic manipulation techniques, such as in vitro fertilization (IVF) and intracytoplasmic sperm injection (ICSI), are widely used in assisted reproductive technology (ART), livestock propagation and application in other fields. Fertilization with IVF and ICSI have been shown to be highly effective, and the mice produced by these techniques develop healthily and with a normal appearance. However, there remains a possibility of epigenetic changes being induced by these techniques. The early stage of mammalian development from fertilization to implantation is a period in which global changes in the epigenetic landscape take place. The sperm and oocyte epigenetic profiles are very different from each other, and the epigenetic remodeling process after fertilization exhibits allelic differences. It is during this period that embryonic manipulation is performed. In this review, I discuss the effects of embryonic manipulation procedures in relation to the epigenetic asymmetry that is present in mammalian early development. Such regulation in the preimplantation embryo provides an important insight into epigenetics.


Asunto(s)
Desarrollo Embrionario/genética , Epigénesis Genética , Fertilización In Vitro/métodos , Inyecciones de Esperma Intracitoplasmáticas/métodos , Alelos , Animales , Perfilación de la Expresión Génica , Humanos , Masculino , Ratones , Oocitos/metabolismo , Espermatozoides/metabolismo
16.
iScience ; 26(11): 108177, 2023 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-38107876

RESUMEN

Mammalian embryos differentiate into the inner cell mass (ICM) and trophectoderm at the 8-16 cell stage. The ICM forms a single cluster that develops into a single fetus. However, the factors that determine differentiation and single cluster formation are unknown. Here we investigated whether embryos could develop normally without gravity. As the embryos cannot be handled by an untrained astronaut, a new device was developed for this purpose. Using this device, two-cell frozen mouse embryos launched to the International Space Station were thawed and cultured by the astronauts under microgravity for 4 days. The embryos cultured under microgravity conditions developed into blastocysts with normal cell numbers, ICM, trophectoderm, and gene expression profiles similar to those cultured under artificial-1 g control on the International Space Station and ground-1 g control, which clearly demonstrated that gravity had no significant effect on the blastocyst formation and initial differentiation of mammalian embryos.

17.
Hum Mol Genet ; 18(8): 1424-38, 2009 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-19174477

RESUMEN

Mice with maternal duplication of proximal Chromosome 11 (MatDp(prox11)), where Meg1/Grb10 is located, exhibit pre- and postnatal growth retardation. To elucidate the responsible imprinted gene for the growth abnormality, we examined the precise structure and regulatory mechanism of this imprinted region and generated novel model mice mimicking the pattern of imprinted gene expression observed in the MatDp(prox11) by deleting differentially methylated region of Meg1/Grb10 (Meg1-DMR). It was found that Cobl and Ddc, the neighboring genes of Meg1/Grb10, also comprise the imprinted region. We also found that the mouse-specific repeat sequence consisting of several CTCF-binding motifs in the Meg1-DMR functions as a silencer, suggesting that the Meg1/Grb10 imprinted region adopted a different regulatory mechanism from the H19/Igf2 region. Paternal deletion of the Meg1-DMR (+/DeltaDMR) caused both upregulation of the maternally expressed Meg1/Grb10 Type I in the whole body and Cobl in the yolk sac and loss of paternally expressed Meg1/Grb10 Type II and Ddc in the neonatal brain and heart, respectively, demonstrating maternalization of the entire Meg1/Grb10 imprinted region. We confirmed that the +/DeltaDMR mice exhibited the same growth abnormalities as the MatDp(prox11) mice. Fetal and neonatal growth was very sensitive to the expression level of Meg1/Grb10 Type I, indicating that the 2-fold increment of the Meg1/Grb10 Type I is one of the major causes of the growth retardation observed in the MatDp(prox11) and +/DeltaDMR mice. This suggests that the corresponding human GRB10 Type I plays an important role in the etiology of Silver-Russell syndrome caused by partial trisomy of 7p11-p13.


Asunto(s)
Cromosomas Humanos Par 11/metabolismo , Proteína Adaptadora GRB10/genética , Impresión Genómica , Trastornos del Crecimiento/genética , Animales , Femenino , Silenciador del Gen , Humanos , Masculino , Ratones
18.
Biochem Biophys Res Commun ; 410(2): 282-8, 2011 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-21658372

RESUMEN

Faithful transcriptome regulation is important in development and also crucial for applications in reproductive and regenerative medicine. Intracytoplasmic sperm injection (ICSI), one of the human assisted reproductive technologies (ART), has long raised concerns about its influence on development. No clear consensus has been reached, however, in spite of many cohort studies carried out in the last two decades on the children conceived by ICSI and/or in vitro fertilization (IVF). In this study, the pre- and postnatal effects of ICSI were assessed using comprehensive transcriptome and phenotypic analyses in mice under strict conditions. Here we demonstrate that, in contrast to IVF, ICSI induces distinct long-lasting transcriptome change that remains at the neonatal stage. Importantly, no remarkable differences were observed in the ICSI adults in either the gene expression or phenotypic profiles, and there was no indication of transmission to the next generation via natural mating. Our results suggest there are no lifelong or transgenerational effects of ICSI, but the ICSI effects during neonatal period remain to be evaluated.


Asunto(s)
Perfilación de la Expresión Génica , Inyecciones de Esperma Intracitoplasmáticas , Animales , Animales Recién Nacidos , Blastocisto/metabolismo , Células Germinativas/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos DBA , Distribución Tisular
19.
Biochem Biophys Rep ; 26: 100984, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33768169

RESUMEN

Constitutive expression of human telomerase reverse transcriptase (hTERT) with DNA methylation of its promoter is a common phenomenon in tumor cells. We recently found that the transcriptional factor Krüppel-like factor 2 (KLF2) binds to the CpG sequences in the hTERT promoter and inhibits hTERT gene expression in normal resting T-cells. The human T-cell line Kit 225 in the resting phase induced by the deprivation of interleukin (IL)-2 showed no decrease in the expression of hTERT, despite the high expression of KLF2. To elucidate the mechanisms of deregulation of hTERT expression in T-cells, we examined the relationship between DNA methylation and KLF2 binding to the hTERT promoter. The hTERT promoter was methylated in Kit 225 cells, resulting in the inhibition of the binding of KLF2 to the promoter. DNA demethylation by the reagent Zebularine recovered KLF2 binding to the hTERT promoter, followed by the downregulation of its gene expression. These findings indicate that the repressive effect of KLF2 on hTERT gene expression is abolished by DNA methylation in T-cell lines.

20.
Stem Cell Res Ther ; 12(1): 510, 2021 09 25.
Artículo en Inglés | MEDLINE | ID: mdl-34563253

RESUMEN

BACKGROUND: Phosphoinositide-3 kinase (PI3K)/AKT signaling participates in cellular proliferation, survival and tumorigenesis. The activation of AKT signaling promotes the cellular reprogramming including generation of induced pluripotent stem cells (iPSCs) and dedifferentiation of primordial germ cells (PGCs). Previous studies suggested that AKT promotes reprogramming by activating proliferation and glycolysis. Here we report a line of evidence that supports the notion that AKT signaling is involved in TET-mediated DNA demethylation during iPSC induction. METHODS: AKT signaling was activated in mouse embryonic fibroblasts (MEFs) that were transduced with OCT4, SOX2 and KLF4. Multiomics analyses were conducted in this system to examine the effects of AKT activation on cells undergoing reprogramming. RESULTS: We revealed that cells undergoing reprogramming with artificially activated AKT exhibit enhanced anabolic glucose metabolism and accordingly increased level of cytosolic α-ketoglutarate (αKG), which is an essential cofactor for the enzymatic activity of the 5-methylcytosine (5mC) dioxygenase TET. Additionally, the level of TET is upregulated. Consistent with the upregulation of αKG production and TET, we observed a genome-wide increase in 5-hydroxymethylcytosine (5hmC), which is an intermediate in DNA demethylation. Moreover, the DNA methylation level of ES-cell super-enhancers of pluripotency-related genes is significantly decreased, leading to the upregulation of associated genes. Finally, the transduction of TET and the administration of cell-permeable αKG to somatic cells synergistically enhance cell reprogramming by Yamanaka factors. CONCLUSION: These results suggest the possibility that the activation of AKT during somatic cell reprogramming promotes epigenetic reprogramming through the hyperactivation of TET at the transcriptional and catalytic levels.


Asunto(s)
Células Madre Pluripotentes Inducidas , Animales , Reprogramación Celular/genética , Proteínas de Unión al ADN/genética , Epigénesis Genética , Fibroblastos/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Ácidos Cetoglutáricos , Factor 4 Similar a Kruppel , Ratones , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Regulación hacia Arriba
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA