Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Bioorg Med Chem ; 43: 116247, 2021 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-34157569

RESUMEN

Alzheimer's disease (AD) is a progressive neurodegenerative disorder characterized, in part, by the misfolding, oligomerization and fibrillization of amyloid-ß (Aß). Evidence suggests that the mechanisms underpinning Aß oligomerization and subsequent fibrillization are distinct, and may therefore require equally distinct therapeutic approaches. Prior studies have suggested that amide derivatives of ferulic acid, a natural polyphenol, may combat multiple AD pathologies, though its impact on Aß aggregation is controversial. We designed and synthesized a systematic library of amide derivatives of ferulic acid and evaluated their anti-oligomeric and anti-fibrillary capacities independently. Azetidine tethered, triphenyl derivatives were the most potent anti-oligomeric agents (compound 2i: IC50 = 1.8 µM ± 0.73 µM); notably these were only modest anti-fibrillary agents (20.57% inhibition of fibrillization), and exemplify the poor correlation between anti-oligomeric/fibrillary activities. These data were subsequently codified in an in silico QSAR model, which yielded a strong predictive model of anti-Aß oligomeric activity (κ = 0.919 for test set; κ = 0.737 for validation set).


Asunto(s)
Enfermedad de Alzheimer/tratamiento farmacológico , Amiloide/antagonistas & inhibidores , Ácidos Cumáricos/farmacología , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Amidas , Amiloide/metabolismo , Ácidos Cumáricos/química , Relación Dosis-Respuesta a Droga , Humanos , Estructura Molecular , Agregado de Proteínas/efectos de los fármacos , Relación Estructura-Actividad
2.
Alzheimers Dement (N Y) ; 8(1): e12283, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35415204

RESUMEN

Introduction: Alzheimer's disease (AD) is characterized by neurotoxic immuno-inflammation concomitant with cytotoxic oligomerization of amyloid beta (Aß) and tau, culminating in concurrent, interdependent immunopathic and proteopathic pathogeneses. Methods: We performed a comprehensive series of in silico, in vitro, and in vivo studies explicitly evaluating the atomistic-molecular mechanisms of cytokine-mediated and Aß-mediated neurotoxicities in AD.  Next, 471 new chemical entities were designed and synthesized to probe the pathways identified by these molecular mechanism studies and to provide prototypic starting points in the development of small-molecule therapeutics for AD. Results: In response to various stimuli (e.g., infection, trauma, ischemia, air pollution, depression), Aß is released as an early responder immunopeptide triggering an innate immunity cascade in which Aß exhibits both immunomodulatory and antimicrobial properties (whether bacteria are present, or not), resulting in a misdirected attack upon "self" neurons, arising from analogous electronegative surface topologies between neurons and bacteria, and rendering them similarly susceptible to membrane-penetrating attack by antimicrobial peptides (AMPs) such as Aß. After this self-attack, the resulting necrotic (but not apoptotic) neuronal breakdown products diffuse to adjacent neurons eliciting further release of Aß, leading to a chronic self-perpetuating autoimmune cycle.  AD thus emerges as a brain-centric autoimmune disorder of innate immunity. Based upon the hypothesis that autoimmune processes are susceptible to endogenous regulatory processes, a subsequent comprehensive screening program of 1137 small molecules normally present in human brain identified tryptophan metabolism as a regulator of brain innate immunity and a source of potential endogenous anti-AD molecules capable of chemical modification into multi-site therapeutic modulators targeting AD's complex immunopathic-proteopathic pathogenesis. Discussion:  Conceptualizing AD as an autoimmune disease, identifying endogenous regulators of this autoimmunity, and designing small molecule drug-like analogues of these endogenous regulators represents a novel therapeutic approach for AD.

3.
Neurochem Int ; 120: 99-111, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30098379

RESUMEN

Alzheimer's disease (AD) is a neurodegenerative disorder, characterized by progressive dementia, neuroinflammation and the accumulation of intracellular neurofibrillary tangles and extracellular plaques. The etiology of AD is unclear, but is generally attributed to four leading hypotheses: (i) abnormal folding and aggregation of amyloid-ß (Aß)/tau proteins (ii) activation of the innate immune system, (iii) mitochondrial dysfunction, and (iv) oxidative stress. To date, therapeutic strategies have largely focused on Aß-centric targets; however, the repeated failure of clinical trials and the continued lack of a disease-modifying therapy demand novel, multifaceted approaches. Natural products are common molecular platforms in drug development; in AD, compounds from the plant phenylpropanoid metabolic pathway have yielded promising associations. Herein, we review developments in the pathogenesis of AD and the metabolism of phenylpropanoids in plants. We further discuss the role of these metabolites as relevant to the four leading mechanisms of AD pathogenesis, and observe multiple protective effects among phenylpropanoids against AD onset and progression.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Ovillos Neurofibrilares/metabolismo , Placa Amiloide/metabolismo , Animales , Progresión de la Enfermedad , Humanos , Estrés Oxidativo/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA