Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Virol ; 97(10): e0107623, 2023 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-37811996

RESUMEN

IMPORTANCE: The influenza A virus genome consists of eight distinct viral RNAs (vRNAs) that are typically packaged into a single virion as an octameric complex. How this genome complex is assembled and incorporated into the virion is poorly understood, but previous research suggests a coordinative role for packaging signals present in all vRNAs. Here, we show that disruption of two packaging signals in a model H7N7 influenza A virus results in a mixture of virions with unusual vRNA content, including empty virions, virions with one to four vRNAs, and virions with octameric complexes composed of vRNA duplicates. Our results suggest that (i) the assembly of error-free octameric complexes proceeds through a series of defined vRNA sub-complexes and (ii) virions can bud without incorporating complete octameric complexes.


Asunto(s)
Subtipo H7N7 del Virus de la Influenza A , Virus de la Influenza A , Empaquetamiento del Genoma Viral , Ensamble de Virus , Genoma Viral , Virus de la Influenza A/genética , Subtipo H7N7 del Virus de la Influenza A/genética , ARN Viral/genética , Virión/genética
2.
J Virol ; 96(5): e0155621, 2022 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-35019718

RESUMEN

Thogotoviruses are tick-borne arboviruses that comprise a unique genus within the Orthomyxoviridae family. Infections with thogotoviruses primarily cause disease in livestock with occasional reports of human infections suggesting a zoonotic potential. In the past, multiple genetically distinct thogotoviruses were isolated mostly from collected ticks. However, many aspects regarding their phylogenetic relationships, morphological characteristics, and virulence in mammals remain unclear. For the present comparative study, we used a collection of 10 different thogotovirus isolates from different geographic areas. Next-generation sequencing and subsequent phylogenetic analyses revealed a distinct separation of these viruses into two major clades, the Thogoto-like and Dhori-like viruses. Electron microscopy demonstrated a heterogeneous morphology with spherical and filamentous particles being present in virus preparations. To study their pathogenicity, we analyzed the viruses in a small animal model system. In intraperitoneally infected C57BL/6 mice, all isolates showed a tropism for liver, lung, and spleen. Importantly, we did not observe horizontal transmission to uninfected, highly susceptible contact mice. The isolates enormously differed in their capacity to induce disease, ranging from subclinical to fatal outcomes. In vivo multistep passaging experiments of two low-pathogenic isolates showed no increased virulence and sequence analyses of the passaged viruses indicated a high stability of the viral genomes after 10 mouse passages. In summary, our analysis demonstrates the broad genetic and phenotypic variability within the thogotovirus genus. Moreover, thogotoviruses are well adapted to mammals but their horizontal transmission seems to depend on ticks as their vectors. IMPORTANCE Since their discovery over 60 years ago, 15 genetically distinct members of the thogotovirus genus have been isolated. These arboviruses belong to the Orthomyxovirus family and share many features with influenza viruses. However, numerous of these isolates have not been characterized in depth. In the present study, we comparatively analyzed a collection of 10 different thogotovirus isolates to answer basic questions about their phylogenetic relationships, morphology, and pathogenicity in mice. Our results highlight shared and unique characteristics of this diverse genus. Taken together, these observations provide a framework for the phylogenic classification and phenotypic characterization of newly identified thogotovirus isolates that could potentially cause severe human infections as exemplified by the recently reported, fatal Bourbon virus cases in the United States.


Asunto(s)
Infecciones por Orthomyxoviridae , Thogotovirus , Animales , Modelos Animales de Enfermedad , Variación Genética , Genoma Viral/genética , Inestabilidad Genómica , Ratones , Ratones Endogámicos C57BL , Microscopía Electrónica , Infecciones por Orthomyxoviridae/transmisión , Infecciones por Orthomyxoviridae/virología , Filogenia , Thogotovirus/clasificación , Thogotovirus/genética , Thogotovirus/patogenicidad , Thogotovirus/ultraestructura , Garrapatas/virología
3.
Nature ; 551(7680): 394-397, 2017 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-29144446

RESUMEN

Ebola and Marburg viruses are filoviruses: filamentous, enveloped viruses that cause haemorrhagic fever. Filoviruses are within the order Mononegavirales, which also includes rabies virus, measles virus, and respiratory syncytial virus. Mononegaviruses have non-segmented, single-stranded negative-sense RNA genomes that are encapsidated by nucleoprotein and other viral proteins to form a helical nucleocapsid. The nucleocapsid acts as a scaffold for virus assembly and as a template for genome transcription and replication. Insights into nucleoprotein-nucleoprotein interactions have been derived from structural studies of oligomerized, RNA-encapsidating nucleoprotein, and cryo-electron microscopy of nucleocapsid or nucleocapsid-like structures. There have been no high-resolution reconstructions of complete mononegavirus nucleocapsids. Here we apply cryo-electron tomography and subtomogram averaging to determine the structure of Ebola virus nucleocapsid within intact viruses and recombinant nucleocapsid-like assemblies. These structures reveal the identity and arrangement of the nucleocapsid components, and suggest that the formation of an extended α-helix from the disordered carboxy-terminal region of nucleoprotein-core links nucleoprotein oligomerization, nucleocapsid condensation, RNA encapsidation, and accessory protein recruitment.


Asunto(s)
Microscopía por Crioelectrón , Ebolavirus/química , Ebolavirus/ultraestructura , Tomografía con Microscopio Electrónico , Proteínas de la Nucleocápside/ultraestructura , Nucleocápside/química , Nucleocápside/ultraestructura , Animales , Chlorocebus aethiops , Células HEK293 , Humanos , Marburgvirus/química , Modelos Moleculares , Conformación Molecular , Proteínas de la Nucleocápside/química , ARN Viral/química , ARN Viral/ultraestructura , Células Vero
4.
J Virol ; 94(9)2020 04 16.
Artículo en Inglés | MEDLINE | ID: mdl-32102881

RESUMEN

While it is well appreciated that late domains in the viral matrix proteins are crucial to mediate efficient virus budding, little is known about roles of late domains in the viral nucleocapsid proteins. Here, we characterized the functional relevance of a YxxL motif with potential late-domain function in the Ebola virus nucleocapsid protein VP24. Mutations in the YxxL motif had two opposing effects on the functions of VP24. On the one hand, the mutation affected the regulatory function of VP24 in viral RNA transcription and replication, which correlated with an increased incorporation of minigenomes into released transcription- and replication-competent virus-like particles (trVLPs). Consequently, cells infected with those trVLPs showed higher levels of viral transcription. On the other hand, mutations of the YxxL motif greatly impaired the intracellular transport of nucleocapsid-like structures (NCLSs) composed of the viral proteins NP, VP35, and VP24 and the length of released trVLPs. Attempts to rescue recombinant Ebola virus expressing YxxL-deficient VP24 failed, underlining the importance of this motif for the viral life cycle.IMPORTANCE Ebola virus (EBOV) causes a severe fever with high case fatality rates and, so far, no available specific therapy. Understanding the interplay between viral and host proteins is important to identify new therapeutic approaches. VP24 is one of the essential nucleocapsid components and is necessary to regulate viral RNA synthesis and condense viral nucleocapsids before their transport to the plasma membrane. Our functional analyses of the YxxL motif in VP24 suggested that it serves as an interface between nucleocapsid-like structures (NCLSs) and cellular proteins, promoting intracellular transport of NCLSs in an Alix-independent manner. Moreover, the YxxL motif is necessary for the inhibitory function of VP24 in viral RNA synthesis. A failure to rescue EBOV encoding VP24 with a mutated YxxL motif indicated that the integrity of the YxxL motif is essential for EBOV growth. Thus, this motif might represent a potential target for antiviral interference.


Asunto(s)
Ebolavirus/genética , Proteínas Virales/genética , Proteínas Virales/metabolismo , Línea Celular , Genoma Viral/genética , Fiebre Hemorrágica Ebola/genética , Fiebre Hemorrágica Ebola/virología , Humanos , Nucleocápside/genética , Nucleocápside/metabolismo , ARN Viral/metabolismo , Virión/genética , Ensamble de Virus/genética , Replicación Viral/fisiología
5.
PLoS Pathog ; 15(4): e1007733, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-31034506

RESUMEN

Formation of cytoplasmic inclusion bodies (IBs) is a hallmark of infections with non-segmented negative-strand RNA viruses (order Mononegavirales). We show here that Nipah virus (NiV), a bat-derived highly pathogenic member of the Paramyxoviridae family, differs from mononegaviruses of the Rhabdo-, Filo- and Pneumoviridae families by forming two types of IBs with distinct localizations, formation kinetics, and protein compositions. IBs in the perinuclear region form rapidly upon expression of the nucleocapsid proteins. These IBperi are highly mobile and associate with the aggresome marker y-tubulin. IBperi can recruit unrelated overexpressed cytosolic proteins but do not contain the viral matrix (M) protein. Additionally, NiV forms an as yet undescribed IB population at the plasma membrane (IBPM) that is y-tubulin-negative but contains the M protein. Infection studies with recombinant NiV revealed that IBPM require the M protein for their formation, and most likely represent sites of NiV assembly and budding. The identification of this novel type of plasma membrane-associated IBs not only provides new insights into NiV biology and may open new avenues to develop novel antiviral approaches to treat these highly pathogenic viruses, it also provides a basis for a more detailed characterization of IBs and their role in virus assembly and replication in infections with other Mononegavirales.


Asunto(s)
Membrana Celular/virología , Infecciones por Henipavirus/virología , Cuerpos de Inclusión Viral/virología , Virus Nipah/patogenicidad , Proteínas de la Matriz Viral/metabolismo , Animales , Chlorocebus aethiops , Glicoproteínas/metabolismo , Infecciones por Henipavirus/metabolismo , Infecciones por Henipavirus/patología , Humanos , Cuerpos de Inclusión Viral/metabolismo , Cuerpos de Inclusión Viral/patología , Células Vero , Ensamble de Virus , Internalización del Virus
6.
Immunity ; 37(5): 867-79, 2012 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-23142781

RESUMEN

The genome of vertebrates contains endogenous retroviruses (ERVs) that are largely nonfunctional relicts of ancestral germline infection by exogenous retroviruses. However, in some mouse strains ERVs are actively involved in disease. Here we report that nucleic acid-recognizing Toll-like receptors 3, 7, and 9 (TLR 3, TLR7, and TLR9) are essential for the control of ERVs. Loss of TLR7 function caused spontaneous retroviral viremia that coincided with the absence of ERV-specific antibodies. Importantly, additional TLR3 and TLR9 deficiency led to acute T cell lymphoblastic leukemia, underscoring a prominent role for TLR3 and TLR9 in surveillance of ERV-induced tumors. Experimental ERV infection induced a TLR3-, TLR7-, and TLR9-dependent group of "acute-phase" genes previously described in HIV and SIV infections. Our study suggests that in addition to their role in innate immunity against exogenous pathogens, nucleic acid-recognizing TLRs contribute to the immune control of activated ERVs and ERV-induced tumors.


Asunto(s)
Retrovirus Endógenos/genética , Ácidos Nucleicos/genética , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , Receptores Toll-Like/genética , Receptores Toll-Like/metabolismo , Viremia/genética , Animales , Anticuerpos Antivirales/genética , Anticuerpos Antivirales/inmunología , Línea Celular , Retrovirus Endógenos/inmunología , Retrovirus Endógenos/metabolismo , Inmunidad Innata/genética , Inmunidad Innata/inmunología , Células Asesinas Naturales/inmunología , Células Asesinas Naturales/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ácidos Nucleicos/inmunología , Ácidos Nucleicos/metabolismo , Oncogenes/genética , Oncogenes/inmunología , Leucemia-Linfoma Linfoblástico de Células T Precursoras/inmunología , Leucemia-Linfoma Linfoblástico de Células T Precursoras/metabolismo , Receptores Toll-Like/inmunología , Viremia/inmunología , Viremia/metabolismo
7.
Proc Natl Acad Sci U S A ; 115(5): 1075-1080, 2018 01 30.
Artículo en Inglés | MEDLINE | ID: mdl-29339477

RESUMEN

The intracytoplasmic movement of nucleocapsids is a crucial step in the life cycle of enveloped viruses. Determination of the viral components necessary for viral nucleocapsid transport competency is complicated by the dynamic and complex nature of nucleocapsid assembly and the lack of appropriate model systems. Here, we established a live-cell imaging system based on the ectopic expression of fluorescent Ebola virus (EBOV) fusion proteins, allowing the visualization and analysis of the movement of EBOV nucleocapsid-like structures with different protein compositions. Only three of the five EBOV nucleocapsid proteins-nucleoprotein, VP35, and VP24-were necessary and sufficient to form transport-competent nucleocapsid-like structures. The transport of these structures was found to be dependent on actin polymerization and to have dynamics that were undistinguishable from those of nucleocapsids in EBOV-infected cells. The intracytoplasmic movement of nucleocapsid-like structures was completely independent of the viral matrix protein VP40 and the viral surface glycoprotein GP. However, VP40 greatly enhanced the efficiency of nucleocapsid recruitment into filopodia, the sites of EBOV budding.


Asunto(s)
Nucleocápside/metabolismo , Proteínas Virales/metabolismo , Proteínas Reguladoras y Accesorias Virales/metabolismo , Antivirales/química , Línea Celular Tumoral , Citoplasma/metabolismo , Ebolavirus/metabolismo , Glicoproteínas/metabolismo , Proteínas Fluorescentes Verdes/metabolismo , Células HEK293 , Humanos , Proteínas Luminiscentes/metabolismo , Proteína Fluorescente Roja
8.
Proc Natl Acad Sci U S A ; 113(45): 12797-12802, 2016 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-27791106

RESUMEN

Two novel influenza A-like viral genome sequences have recently been identified in Central and South American fruit bats and provisionally designated "HL17NL10" and "HL18NL11." All efforts to isolate infectious virus from bats or to generate these viruses by reverse genetics have failed to date. Recombinant vesicular stomatitis virus (VSV) encoding the hemagglutinin-like envelope glycoproteins HL17 or HL18 in place of the VSV glycoprotein were generated to identify cell lines that are susceptible to bat influenza A-like virus entry. More than 30 cell lines derived from various species were screened but only a few cell lines were found to be susceptible, including Madin-Darby canine kidney type II (MDCK II) cells. The identification of cell lines susceptible to VSV chimeras allowed us to recover recombinant HL17NL10 and HL18NL11 viruses from synthetic DNA. Both influenza A-like viruses established a productive infection in MDCK II cells; however, HL18NL11 replicated more efficiently than HL17NL10 in this cell line. Unlike conventional influenza A viruses, bat influenza A-like viruses started the infection preferentially at the basolateral membrane of polarized MDCK II cells; however, similar to conventional influenza A viruses, bat influenza A-like viruses were released primarily from the apical site. The ability of HL18NL11 or HL17NL10 viruses to infect canine and human cells might reflect a zoonotic potential of these recently identified bat viruses.

9.
J Gen Virol ; 99(12): 1614-1620, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30394868

RESUMEN

The Marburg virus (MARV) matrix protein, VP40, is a multifunctional protein that is essential for the assembly and release of viral particles, inhibition of the interferon response and viral transcription/replication. VP40 is assumed to be present as soluble monomers and membrane-bound higher-order oligomers. To investigate the functional relevance of oligomerization and lipid binding of VP40 we constructed mutants with impaired VP40-VP40 or VP40-lipid interactions and tested their capacity to bind the plasma membrane, to form virus-like particles (VLPs) and to inhibit viral RNA synthesis. All of the analysed VP40 mutants formed perinuclear aggregates and were defective in their delivery to the plasma membrane and in VLP production. The VP40 mutants that were competent for oligomerization but lacked VP40-lipid interactions formed fibril-like structures, influenced MARV inclusion body formation and inhibited viral transcription/replication more strongly than the VP40 wild-type. Altogether, mutations that interfere with VP40's transition from monomer to higher-order oligomers and/or lipid interactions destroy the protein's multifunctionality.


Asunto(s)
Marburgvirus/fisiología , Proteínas de la Matriz Viral/metabolismo , Ensamble de Virus , Liberación del Virus , Análisis Mutacional de ADN , Metabolismo de los Lípidos , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Unión Proteica , Multimerización de Proteína , Proteínas de la Matriz Viral/genética
10.
Curr Top Microbiol Immunol ; 411: 353-380, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28601948

RESUMEN

This chapter reviews our current knowledge about the spatiotemporal assembly of filoviral particles. We will follow particles from nucleocapsid entry into the cytoplasm until the nucleocapsids are enveloped at the plasma membrane. We will also highlight the currently open scientific questions surrounding filovirus assembly.


Asunto(s)
Filoviridae/química , Filoviridae/metabolismo , Ensamble de Virus , Membrana Celular/virología , Citoplasma/virología , Nucleocápside/metabolismo
11.
J Virol ; 90(3): 1444-54, 2016 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-26581998

RESUMEN

UNLABELLED: Marburg virus (MARV) induces severe hemorrhagic fever in humans and nonhuman primates but only transient nonlethal disease in rodents. However, sequential passages of MARV in rodents boosts infection leading to lethal disease. Guinea pig-adapted MARV contains one mutation in the viral matrix protein VP40 at position 184 (VP40D184N). The contribution of the D184N mutation to the efficacy of replication in a new host is unknown. In the present study, we demonstrated that recombinant MARV containing the D184N mutation in VP40 [rMARVVP40(D184N)] grew to higher titers than wild-type recombinant MARV (rMARVWT) in guinea pig cells. Moreover, rMARVVP40(D184N) displayed higher infectivity in guinea pig cells. Comparative analysis of VP40 functions indicated that neither the interferon (IFN)-antagonistic function nor the membrane binding capabilities of VP40 were affected by the D184N mutation. However, the production of VP40-induced virus-like particles (VLPs) and the recruitment of other viral proteins to the budding site was improved by the D184N mutation in guinea pig cells, which resulted in the higher infectivity of VP40D184N-induced infectious VLPs (iVLPs) compared to that of VP40-induced iVLPs. In addition, the function of VP40 in suppressing viral RNA synthesis was influenced by the D184N mutation specifically in guinea pig cells, thus allowing greater rates of transcription and replication. Our results showed that the improved viral fitness of rMARVVP40(D184N) in guinea pig cells was due to the better viral assembly function of VP40D184N and its lower inhibitory effect on viral transcription and replication rather than modulation of the VP40-mediated suppression of IFN signaling. IMPORTANCE: The increased virulence achieved by virus passaging in a new host was accompanied by mutations in the viral genome. Analyzing how these mutations affect the functions of viral proteins and the ability of the virus to grow within new host cells helps in the understanding of the molecular mechanisms increasing virulence. Using a reverse genetics approach, we demonstrated that a single mutation in MARV VP40 detected in a guinea pig-adapted MARV provided a replicative advantage of rMARVVP40(D184N) in guinea pig cells. Our studies show that this replicative advantage of rMARV VP40D184N was based on the improved functions of VP40 in iVLP assembly and in the regulation of transcription and replication rather than on the ability of VP40 to combat the host innate immunity.


Asunto(s)
Adaptación Biológica , Marburgvirus/fisiología , Mutación Missense , Proteínas de la Matriz Viral/genética , Proteínas de la Matriz Viral/metabolismo , Ensamble de Virus , Replicación Viral , Animales , Línea Celular , Cobayas , Humanos , Marburgvirus/genética , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Carga Viral
12.
J Gen Virol ; 97(10): 2494-2500, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27450090

RESUMEN

Marburg virus (MARV) causes severe, often fatal, disease in humans and transient illness in rodents. Sequential passaging of MARV in guinea pigs resulted in selection of a lethal virus containing 4 aa changes. A D184N mutation in VP40 (VP40D184N), which leads to a species-specific gain of viral fitness, and three mutations in the active site of viral RNA-dependent RNA polymerase L, which were investigated in the present study for functional significance in human and guinea pig cells. The transcription/replication activity of L mutants was strongly enhanced by a substitution at position 741 (S741C), and inhibited by other substitutions (D758A and A759D) in both species. The polymerase activity of L carrying the S741C substitution was eightfold higher in guinea pig cells than in human cells upon co-expression with VP40D184N, suggesting that the additive effect of the two mutations provides MARV a replicative advantage in the new host.


Asunto(s)
ARN Polimerasas Dirigidas por ADN/genética , ARN Polimerasas Dirigidas por ADN/metabolismo , Cobayas/virología , Enfermedad del Virus de Marburg/virología , Marburgvirus/enzimología , Enfermedades de los Roedores/virología , Proteínas Virales/genética , Proteínas Virales/metabolismo , Animales , Dominio Catalítico , ARN Polimerasas Dirigidas por ADN/química , Enfermedad del Virus de Marburg/mortalidad , Marburgvirus/clasificación , Marburgvirus/genética , Marburgvirus/aislamiento & purificación , Mutación Missense , Enfermedades de los Roedores/mortalidad , Proteínas Virales/química
13.
J Virol ; 90(5): 2514-22, 2015 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-26676785

RESUMEN

UNLABELLED: Nipah virus (NiV) causes fatal encephalitic infections in humans. To characterize the role of the matrix (M) protein in the viral life cycle, we generated a reverse genetics system based on NiV strain Malaysia. Using an enhanced green fluorescent protein (eGFP)-expressing M protein-deleted NiV, we observed a slightly increased cell-cell fusion, slow replication kinetics, and significantly reduced peak titers compared to the parental virus. While increased amounts of viral proteins were found in the supernatant of cells infected with M-deleted NiV, the infectivity-to-particle ratio was more than 100-fold reduced, and the particles were less thermostable and of more irregular morphology. Taken together, our data demonstrate that the M protein is not absolutely required for the production of cell-free NiV but is necessary for proper assembly and release of stable infectious NiV particles. IMPORTANCE: Henipaviruses cause a severe disease with high mortality in human patients. Therefore, these viruses can be studied only in biosafety level 4 (BSL-4) laboratories, making it more challenging to characterize their life cycle. Here we investigated the role of the Nipah virus matrix protein in virus-mediated cell-cell fusion and in the formation and release of newly produced particles. We found that even though low levels of infectious viruses are produced in the absence of the matrix protein, it is required for the release of highly infectious and stable particles. Fusogenicity of matrixless viruses was slightly enhanced, further demonstrating the critical role of this protein in different steps of Nipah virus spread.


Asunto(s)
Virus Nipah/fisiología , Proteínas de la Matriz Viral/metabolismo , Ensamble de Virus , Liberación del Virus , Animales , Línea Celular , Eliminación de Gen , Humanos , Viabilidad Microbiana/efectos de los fármacos , Microscopía Electrónica de Transmisión , Microscopía Fluorescente , Microscopía Inmunoelectrónica , Virus Nipah/genética , Virus Nipah/efectos de la radiación , Virus Nipah/ultraestructura , Genética Inversa , Temperatura , Carga Viral , Proteínas de la Matriz Viral/genética , Virión/ultraestructura , Cultivo de Virus , Replicación Viral
14.
PLoS Pathog ; 10(10): e1004463, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25330247

RESUMEN

Endosomal sorting complex required for transport (ESCRT) machinery supports the efficient budding of Marburg virus (MARV) and many other enveloped viruses. Interaction between components of the ESCRT machinery and viral proteins is predominantly mediated by short tetrapeptide motifs, known as late domains. MARV contains late domain motifs in the matrix protein VP40 and in the genome-encapsidating nucleoprotein (NP). The PSAP late domain motif of NP recruits the ESCRT-I protein tumor susceptibility gene 101 (Tsg101). Here, we generated a recombinant MARV encoding NP with a mutated PSAP late domain (rMARV(PSAPmut)). rMARV(PSAPmut) was attenuated by up to one log compared with recombinant wild-type MARV (rMARV(wt)), formed smaller plaques and exhibited delayed virus release. Nucleocapsids in rMARV(PSAPmut)-infected cells were more densely packed inside viral inclusions and more abundant in the cytoplasm than in rMARV(wt)-infected cells. A similar phenotype was detected when MARV-infected cells were depleted of Tsg101. Live-cell imaging analyses revealed that Tsg101 accumulated in inclusions of rMARV(wt)-infected cells and was co-transported together with nucleocapsids. In contrast, rMARV(PSAPmut) nucleocapsids did not display co-localization with Tsg101, had significantly shorter transport trajectories, and migration close to the plasma membrane was severely impaired, resulting in reduced recruitment into filopodia, the major budding sites of MARV. We further show that the Tsg101 interacting protein IQGAP1, an actin cytoskeleton regulator, was recruited into inclusions and to individual nucleocapsids together with Tsg101. Moreover, IQGAP1 was detected in a contrail-like structure at the rear end of migrating nucleocapsids. Down regulation of IQGAP1 impaired release of MARV. These results indicate that the PSAP motif in NP, which enables binding to Tsg101, is important for the efficient actin-dependent transport of nucleocapsids to the sites of budding. Thus, the interaction between NP and Tsg101 supports several steps of MARV assembly before virus fission.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Marburgvirus , Nucleocápside/metabolismo , Ribonucleoproteínas/metabolismo , Factores de Transcripción/metabolismo , Proteínas Virales/metabolismo , Citoesqueleto de Actina/metabolismo , Animales , Humanos , Proteínas de la Nucleocápside , Transporte de Proteínas/fisiología , Liberación del Virus/fisiología
15.
Proc Natl Acad Sci U S A ; 110(35): 14402-7, 2013 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-23940347

RESUMEN

Transport of large viral nucleocapsids from replication centers to assembly sites requires contributions from the host cytoskeleton via cellular adaptor and motor proteins. For the Marburg and Ebola viruses, related viruses that cause severe hemorrhagic fevers, the mechanism of nucleocapsid transport remains poorly understood. Here we developed and used live-cell imaging of fluorescently labeled viral and host proteins to characterize the dynamics and molecular requirements of nucleocapsid transport in Marburg virus-infected cells under biosafety level 4 conditions. The study showed a complex actin-based transport of nucleocapsids over long distances from the viral replication centers to the budding sites. Only after the nucleocapsids had associated with the matrix viral protein VP40 at the plasma membrane were they recruited into filopodia and cotransported with host motor myosin 10 toward the budding sites at the tip or side of the long cellular protrusions. Three different transport modes and velocities were identified: (i) Along actin filaments in the cytosol, nucleocapsids were transported at ∼200 nm/s; (ii) nucleocapsids migrated from one actin filament to another at ∼400 nm/s; and (iii) VP40-associated nucleocapsids moved inside filopodia at 100 nm/s. Unique insights into the spatiotemporal dynamics of nucleocapsids and their interaction with the cytoskeleton and motor proteins can lead to novel classes of antivirals that interfere with the trafficking and subsequent release of the Marburg virus from infected cells.


Asunto(s)
Actinas/metabolismo , Marburgvirus/metabolismo , Nucleocápside/metabolismo , Línea Celular , Humanos , Marburgvirus/genética , Transporte de Proteínas , Seudópodos/metabolismo , Proteínas de la Matriz Viral/genética , Proteínas de la Matriz Viral/metabolismo
16.
J Infect Dis ; 212 Suppl 2: S160-6, 2015 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-26038396

RESUMEN

BACKGROUND: Transport of ebolavirus (EBOV) nucleocapsids from perinuclear viral inclusions, where they are formed, to the site of budding at the plasma membrane represents an obligatory step of virus assembly. Until now, no live-cell studies on EBOV nucleocapsid transport have been performed, and participation of host cellular factors in this process, as well as the trajectories and speed of nucleocapsid transport, remain unknown. METHODS: Live-cell imaging of EBOV-infected cells treated with different inhibitors of cellular cytoskeleton was used for the identification of cellular proteins involved in the nucleocapsid transport. EBOV nucleocapsids were visualized by expression of green fluorescent protein (GFP)-labeled nucleocapsid viral protein 30 (VP30) in EBOV-infected cells. RESULTS: Incorporation of the fusion protein VP30-GFP into EBOV nucleocapsids was confirmed by Western blot and indirect immunofluorescence analyses. Importantly, VP30-GFP fluorescence was readily detectable in the densely packed nucleocapsids inside perinuclear viral inclusions and in the dispersed rod-like nucleocapsids located outside of viral inclusions. Live-cell imaging of EBOV-infected cells revealed exit of single nucleocapsids from the viral inclusions and their intricate transport within the cytoplasm before budding at the plasma membrane. Nucleocapsid transport was arrested upon depolymerization of actin filaments (F-actin) and inhibition of the actin-nucleating Arp2/3 complex, and it was not altered upon depolymerization of microtubules or inhibition of N-WASP. Actin comet tails were often detected at the rear end of nucleocapsids. Marginally located nucleocapsids entered filopodia, moved inside, and budded from the tip of these thin cellular protrusions. CONCLUSIONS: Live-cell imaging of EBOV-infected cells revealed actin-dependent long-distance transport of EBOV nucleocapsids before budding at the cell surface. These findings provide useful insights into EBOV assembly and have potential application in the development of antivirals.


Asunto(s)
Actinas/metabolismo , Transporte Biológico/fisiología , Ebolavirus/metabolismo , Nucleocápside/metabolismo , Línea Celular Tumoral , Membrana Celular/metabolismo , Citoplasma/metabolismo , Citoesqueleto/metabolismo , Proteínas Fluorescentes Verdes/metabolismo , Humanos , Cuerpos de Inclusión/metabolismo , Seudópodos/metabolismo , Factores de Transcripción/metabolismo , Proteínas Virales/metabolismo
17.
Proc Natl Acad Sci U S A ; 109(11): 4275-80, 2012 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-22371572

RESUMEN

Ebola virus is a highly pathogenic filovirus causing severe hemorrhagic fever with high mortality rates. It assembles heterogenous, filamentous, enveloped virus particles containing a negative-sense, single-stranded RNA genome packaged within a helical nucleocapsid (NC). We have used cryo-electron microscopy and tomography to visualize Ebola virus particles, as well as Ebola virus-like particles, in three dimensions in a near-native state. The NC within the virion forms a left-handed helix with an inner nucleoprotein layer decorated with protruding arms composed of VP24 and VP35. A comparison with the closely related Marburg virus shows that the N-terminal region of nucleoprotein defines the inner diameter of the Ebola virus NC, whereas the RNA genome defines its length. Binding of the nucleoprotein to RNA can assemble a loosely coiled NC-like structure; the loose coil can be condensed by binding of the viral matrix protein VP40 to the C terminus of the nucleoprotein, and rigidified by binding of VP24 and VP35 to alternate copies of the nucleoprotein. Four proteins (NP, VP24, VP35, and VP40) are necessary and sufficient to mediate assembly of an NC with structure, symmetry, variability, and flexibility indistinguishable from that in Ebola virus particles released from infected cells. Together these data provide a structural and architectural description of Ebola virus and define the roles of viral proteins in its structure and assembly.


Asunto(s)
Microscopía por Crioelectrón/métodos , Ebolavirus/ultraestructura , Tomografía con Microscopio Electrónico/métodos , Genoma Viral/genética , Células HEK293 , Humanos , Procesamiento de Imagen Asistido por Computador , Nucleocápside/genética , Nucleocápside/ultraestructura , Virión/genética , Virión/ultraestructura
18.
J Virol ; 87(6): 3143-54, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23283941

RESUMEN

Highly pathogenic Nipah virus (NiV) infections are transmitted via airway secretions and urine, commonly via the respiratory route. Epithelial surfaces represent important replication sites in both primary and systemic infection phases. NiV entry and spread from polarized epithelial cells therefore determine virus entry and dissemination within a new host and influence virus shedding via mucosal surfaces in the respiratory and urinary tract. To date, there is no knowledge regarding the entry and exit sites of NiV in polarized epithelial cells. In this report, we show for the first time that NiV can infect polarized kidney epithelial cells (MDCK) from both cell surfaces, while virus release is primarily restricted to the apical plasma membrane. Substantial amounts of basolateral infectivity were detected only after infection with high virus doses, at time points when the integrity of the cell monolayer was largely disrupted as a result of cell-to-cell fusion. Confocal immunofluorescence analyses of envelope protein distribution at early and late infection stages suggested that apical virus budding is determined by the polarized sorting of the NiV matrix protein, M. Studies with stably M-expressing and with monensin-treated cells furthermore demonstrated that M protein transport is independent from the glycoproteins, implying that the M protein possesses an intrinsic apical targeting signal.


Asunto(s)
Células Epiteliales/virología , Virus Nipah/fisiología , Internalización del Virus , Liberación del Virus , Línea Celular , Humanos , Microscopía Confocal , Microscopía Fluorescente , Transporte de Proteínas , Proteínas de la Matriz Viral/metabolismo
19.
Cell Microbiol ; 15(2): 270-84, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23186212

RESUMEN

The key player to assemble the filamentous Marburg virus particles is the matrix protein VP40 which orchestrates recruitment of nucleocapsid complexes and the viral glycoprotein GP to the budding sites at the plasma membrane. Here, VP40 induces the formation of the viral particles, determines their morphology and excludes cellular proteins from the virions. Budding takes place at filopodia in non-polarized cells and at the basolateral cell pole in polarized epithelial cells. Molecular basis of how VP40 exerts its multifunctional role in these different processes is currently under investigation. Here we summarize recent data on structure-function relationships of VP40 and GP in connection with their function in assembly. Questions concerning the complex particle assembly, budding and release remaining enigmatic are addressed. Cytoplasmic domains of viral surface proteins often serve as a connection to the viral matrix protein or as binding sites for further viral or cellular proteins. A cooperation of MARV GP and VP40 building up the viral envelope can be proposed and is discussed in more detail in this review, as the cytoplasmic domain of GP represents an obvious interaction candidate because of its localization adjacent to the VP40 layer. Interestingly, truncation of the short cytoplasmic domain of GP neither inhibited interaction with VP40 nor incorporation of GP into progeny viral particles. Based on reverse genetics we generated recombinant virions expressing a GP mutant without the cytoplasmic tail. Investigations revealed attenuation in virus growth and an obvious defect in entry. Further investigations showed that the truncation of the cytoplasmic domain of GP impaired the structural integrity of the ectodomain, whichconsequently had impact on entry steps downstream of virus binding. Our data indicated that changes in the cytoplasmic domain are relayed over the lipid membrane to alter the function of the ectodomain.


Asunto(s)
Glicoproteínas/metabolismo , Marburgvirus/metabolismo , Proteínas de la Membrana/metabolismo , Nucleocápside/metabolismo , Proteínas de la Matriz Viral/metabolismo , Ensamble de Virus/fisiología , Animales , Sitios de Unión , Línea Celular Tumoral , Membrana Celular/metabolismo , Membrana Celular/ultraestructura , Membrana Celular/virología , Chlorocebus aethiops , Citoplasma/metabolismo , Citoplasma/ultraestructura , Citoplasma/virología , Glicoproteínas/genética , Humanos , Marburgvirus/genética , Marburgvirus/ultraestructura , Proteínas de la Membrana/genética , Nucleocápside/genética , Nucleocápside/ultraestructura , Unión Proteica , Estructura Terciaria de Proteína , Relación Estructura-Actividad , Células Vero , Proteínas de la Matriz Viral/genética
20.
PLoS Biol ; 9(11): e1001196, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22110401

RESUMEN

Several major human pathogens, including the filoviruses, paramyxoviruses, and rhabdoviruses, package their single-stranded RNA genomes within helical nucleocapsids, which bud through the plasma membrane of the infected cell to release enveloped virions. The virions are often heterogeneous in shape, which makes it difficult to study their structure and assembly mechanisms. We have applied cryo-electron tomography and sub-tomogram averaging methods to derive structures of Marburg virus, a highly pathogenic filovirus, both after release and during assembly within infected cells. The data demonstrate the potential of cryo-electron tomography methods to derive detailed structural information for intermediate steps in biological pathways within intact cells. We describe the location and arrangement of the viral proteins within the virion. We show that the N-terminal domain of the nucleoprotein contains the minimal assembly determinants for a helical nucleocapsid with variable number of proteins per turn. Lobes protruding from alternate interfaces between each nucleoprotein are formed by the C-terminal domain of the nucleoprotein, together with viral proteins VP24 and VP35. Each nucleoprotein packages six RNA bases. The nucleocapsid interacts in an unusual, flexible "Velcro-like" manner with the viral matrix protein VP40. Determination of the structures of assembly intermediates showed that the nucleocapsid has a defined orientation during transport and budding. Together the data show striking architectural homology between the nucleocapsid helix of rhabdoviruses and filoviruses, but unexpected, fundamental differences in the mechanisms by which the nucleocapsids are then assembled together with matrix proteins and initiate membrane envelopment to release infectious virions, suggesting that the viruses have evolved different solutions to these conserved assembly steps.


Asunto(s)
Tomografía con Microscopio Electrónico , Marburgvirus/fisiología , Marburgvirus/ultraestructura , Ensamble de Virus , Liberación del Virus , Línea Celular , Microscopía por Crioelectrón , Células HEK293 , Humanos , Marburgvirus/química , Nucleocápside/metabolismo , Nucleoproteínas/metabolismo , ARN Viral , Virus de la Rabia/fisiología , Virus de la Rabia/ultraestructura , Proteínas Virales/química , Proteínas Virales/metabolismo , Proteínas Reguladoras y Accesorias Virales/química , Proteínas Reguladoras y Accesorias Virales/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA