Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Neurobiol Dis ; 38(1): 47-58, 2010 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-20060471

RESUMEN

Several strategies have been proposed to restore useful vision following photoreceptor degeneration. However, a very few studies have investigated late anatomical changes and functional state of residual retinal neurons after complete photoreceptor loss. We investigated the progressive degeneration of retinal ganglion cells (RGCs) in P23H rats. The RGC multielectrode array recordings indicated lower firing rates, disappearance of broad-scale, and maintenance of short-scale pairwise correlations. Up to 11% of RGCs displayed repetitive and often correlated spike discharges, reminiscent of developmental rhythmic activity, which could be reversibly suppressed by blockade of the AMPA/kainite glutamate receptors. RGCs in P23H rats remain sensitive to local electrical stimulation, generating short-latency responses as in the normal retina. These results provide evidence that, despite the demonstrated RGC degeneration, remaining active RGCs maintain their basic physiological and network properties with some emerging functional changes such as the spontaneous rhythmic activity in late stages of the degenerative disease.


Asunto(s)
Degeneración Nerviosa/patología , Células Fotorreceptoras de Vertebrados/patología , Recuperación de la Función/genética , Degeneración Retiniana/patología , Degeneración Retiniana/fisiopatología , Células Ganglionares de la Retina/patología , Potenciales de Acción/genética , Adaptación Fisiológica/genética , Animales , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Estimulación Eléctrica , Electrorretinografía , Antagonistas de Aminoácidos Excitadores , Predisposición Genética a la Enfermedad , Degeneración Nerviosa/genética , Degeneración Nerviosa/fisiopatología , Técnicas de Cultivo de Órganos , Periodicidad , Ratas , Ratas Mutantes , Ratas Sprague-Dawley , Receptores de Glutamato/efectos de los fármacos , Receptores de Glutamato/metabolismo , Degeneración Retiniana/genética , Células Ganglionares de la Retina/fisiología , Transmisión Sináptica/genética , Factores de Tiempo
2.
Exp Toxicol Pathol ; 60(1): 17-32, 2008 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-18294830

RESUMEN

Assessing retinal drug toxicity is becoming increasingly important as different molecules are now developed for the treatment of neurodegenerative diseases and vascular disorders. In pharmacology and toxicology, the electroretinogram (ERG) and the multielectrode array (MEA) recording techniques can be used to quantify the possible side effects of retino-active xenobiotics. Toxicity testing requires the use of rodent as well as non-rodent models for extrapolation to the human model when determining risk and safety. Animal species differ in their retinal anatomo-physiology: most rodents used in toxicology studies are essentially nocturnal species, whereas the non-rodent laboratory species normally used (e.g. dogs, pigs and monkeys) are diurnal. The ratio between the photoreceptor populations which varies from species to species, should be considered when designing the experiment protocol and the interpretation. The described ERG procedures are designed to comply with all applicable good laboratory practice standards. Use of these procedures should yield an acceptable level of intra- and inter-subject variability for compiling a historical database, and for detecting possible retinal toxicity in animal studies. They could therefore be used as specific and standardized tools for screening of potential retinotoxic molecules in drug discovery and development in order to compare methods and results with those obtained in human electrophysiological assessments. Recording of ganglion cell light responses on ex vivo retina with the MEA technique can further demonstrate how retino-active xenobiotics affect retinal visual information processing by eliminating potential obstacles related to bioavailability and blood barrier permeability.


Asunto(s)
Electrorretinografía/métodos , Retina/efectos de los fármacos , Enfermedades de la Retina/inducido químicamente , Pruebas de Toxicidad/métodos , Xenobióticos/toxicidad , Animales , Animales de Laboratorio , Modelos Animales de Enfermedad , Electrorretinografía/normas , Pruebas de Toxicidad/normas , Xenobióticos/clasificación
3.
Invest Ophthalmol Vis Sci ; 56(4): 2639-48, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25814000

RESUMEN

PURPOSE: Sildenafil (Viagra), a cGMP-specific phosphodiesterase type 5 inhibitor, is widely used for the treatment of erectile dysfunction and pulmonary hypertension. Clinical studies have reported transient visual impairments in patients after single-dose sildenafil use, suggesting neural involvement in several retinal layers, and also, possibly, retinal ganglion cells (RGCs), which provide the unique output of visual information to the brain. However, the effect of sildenafil on the RGC light responses is poorly understood. We therefore evaluated its effect on RGC spiking activity. METHODS: We measured spontaneous and light-induced RGC spiking activity in Long-Evans rat ex vivo retinas by using the multielectrode array technique. Sildenafil citrate (0.3-30 µM) was applied to retinal preparations under continuous perfusion, during 10 to 60 minutes, followed by sildenafil washout. RESULTS: A high concentration (30 µM) of sildenafil decreased the magnitudes of both ON- and OFF-type RGC light responses, to 26.3% ± 17% and 18.3% ± 7%, respectively, of the initial value, in a reversible and concentration-dependent fashion, while in 50% of RGCs all light responses were completely suppressed. Sildenafil also greatly increased the latency of both types of light responses. In this study, we provided evidence that extended exposure to both sildenafil and repeated light stimulation potentiates drug effects and delays recovery. CONCLUSIONS: We found transient and concentration-dependent alterations of light responses at the RGC level after sildenafil exposure that are relevant for a better understanding of the acute visual effects of administration of this compound in humans.


Asunto(s)
Piperazinas/farmacología , Células Ganglionares de la Retina/efectos de los fármacos , Sulfonamidas/farmacología , Trastornos de la Visión/tratamiento farmacológico , Animales , Modelos Animales de Enfermedad , Inhibidores de Fosfodiesterasa 5/farmacología , Purinas/farmacología , Ratas , Ratas Long-Evans , Células Ganglionares de la Retina/patología , Citrato de Sildenafil , Trastornos de la Visión/patología , Trastornos de la Visión/fisiopatología
4.
ASN Neuro ; 7(4)2015.
Artículo en Inglés | MEDLINE | ID: mdl-26311075

RESUMEN

Neuropeptide Y (NPY) is expressed in mammalian retina but the location and potential modulatory effects of NPY receptor activation remain largely unknown. Retinal ganglion cell (RGC) death is a hallmark of several retinal degenerative diseases, particularly glaucoma. Using purified RGCs and ex vivo rat retinal preparations, we have measured RGC intracellular free calcium concentration ([Ca2+]i) and RGC spiking activity, respectively. We found that NPY attenuated the increase in the [Ca2+]i triggered by glutamate mainly via Y1 receptor activation. Moreover, (Leu31, Pro34)-NPY, a Y1/Y5 receptor agonist, increased the initial burst response of OFF-type RGCs, although no effect was observed on RGC spontaneous spiking activity. The Y1 receptor activation was also able to directly modulate RGC responses by attenuating the NMDA-induced increase in RGC spiking activity. These results suggest that Y1 receptor activation, at the level of inner or outer plexiform layers, leads to modulation of RGC receptive field properties. Using in vitro cultures of rat retinal explants exposed to NMDA, we found that NPY pretreatment prevented NMDA-induced cell death. However, in an animal model of retinal ischemia-reperfusion injury, pretreatment with NPY or (Leu31, Pro34)-NPY was not able to prevent apoptosis or rescue RGCs. In conclusion, we found modulatory effects of NPY application that for the first time were detected at the level of RGCs. However, further studies are needed to evaluate whether NPY neuroprotective actions detected in retinal explants can be translated into animal models of retinal degenerative diseases.


Asunto(s)
Receptores de Neuropéptido Y/metabolismo , Células Ganglionares de la Retina/efectos de los fármacos , Células Ganglionares de la Retina/metabolismo , Animales , Animales Recién Nacidos , Calcio/metabolismo , Células Cultivadas , Modelos Animales de Enfermedad , Electrorretinografía , Regulación de la Expresión Génica/efectos de los fármacos , Guanosina 5'-O-(3-Tiotrifosfato)/farmacocinética , Etiquetado Corte-Fin in Situ , Masculino , Neuropéptido Y/agonistas , Neuropéptido Y/análogos & derivados , Neuropéptido Y/antagonistas & inhibidores , Neuropéptido Y/genética , Neuropéptido Y/metabolismo , Neuropéptido Y/farmacología , Fragmentos de Péptidos/farmacología , Unión Proteica/efectos de los fármacos , ARN Mensajero/metabolismo , Ratas , Ratas Long-Evans , Ratas Wistar , Receptores de Neuropéptido Y/agonistas , Receptores de Neuropéptido Y/antagonistas & inhibidores , Receptores de Neuropéptido Y/genética , Enfermedades de la Retina/patología , Enfermedades de la Retina/fisiopatología , Isótopos de Azufre/farmacocinética , Factor de Transcripción Brn-3A/metabolismo
5.
Med Eng Phys ; 33(6): 755-63, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21354850

RESUMEN

We present a finite element based simulation and analysis method to describe the spatial extent of stimulation and the effects of electrode-tissue interactions in subretinal prostheses. In particular, we estimate the threshold stimulation current needed to depolarise and evoke action potentials in the ganglion cells to be stimulated at a particular distance from the electrode. This is achieved through the application of a threshold electric field to a spherical neuronal soma model of a retinal ganglion cell under consideration. Threshold stimulation currents and the lateral extent of the stimulation zone were computed for disc microelectrodes in subretinal stimulation mode. Recent evidence indicates a decrease in threshold charge with time following subretinal implantation. Consequently, to explain the variation in threshold stimulation currents, we propose a hypothesis based on an electrode-tissue gap. Threshold stimulation currents and impedances for different electrode-tissue gaps were computed. We validate the hypothesis with our simulation results that the changes in impedance observed with time in vivo can be mainly attributed to the varying distance of the ganglion cells from electrodes due to changes in electrode-tissue gap. Our simulation framework proposes a convenient and practical method applicable for studying different electrode geometries used for retinal stimulation.


Asunto(s)
Estimulación Eléctrica/métodos , Prótesis e Implantes , Retina/fisiología , Células Ganglionares de la Retina/fisiología , Prótesis Visuales , Potenciales de Acción/fisiología , Animales , Simulación por Computador , Espectroscopía Dieléctrica/métodos , Estimulación Eléctrica/instrumentación , Análisis de Elementos Finitos , Microelectrodos , Ratas , Retina/cirugía , Umbral Sensorial/fisiología , Vías Visuales/fisiología , Percepción Visual/fisiología
6.
J Physiol ; 583(Pt 3): 945-58, 2007 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-17627996

RESUMEN

Glial Ca(2+) excitability plays a key role in reciprocal neuron-glia communication. In the retina, neuron-glia signalling is expected to be maximal in the dark, but the glial Ca(2+) signal characteristics under such conditions have not been evaluated. To address this question, we used bioluminescence imaging to monitor spontaneous Ca(2+) changes under dark conditions selectively in Müller cells, the principal retinal glial cells. By combining this imaging approach with network analysis, we demonstrate that activity in Müller cells is organized in networks of coactive cells, involving 2-16 cells located distantly and/or in clusters. We also report that spontaneous activity of small networks (2-6 Müller cells) repeat over time, sometimes in the same sequential order, revealing specific temporal dynamics. In addition, we show that networks of coactive glial cells are inhibited by TTX, indicating that ganglion and/or amacrine neuronal cells probably regulate Müller cell network properties. These results represent the first demonstration that spontaneous activity in adult Müller cells is patterned into correlated networks that display repeated sequences of coactivations over time. Furthermore, our bioluminescence technique provides a novel tool to study the dynamic characteristics of glial Ca(2+) events in the retina under dark conditions, which should greatly facilitate future investigations of retinal dark-adaptive processes.


Asunto(s)
Calcio/metabolismo , Adaptación a la Oscuridad/fisiología , Microscopía Fluorescente/métodos , Neuroglía/fisiología , Retina/citología , Retina/fisiología , Aequorina/genética , Factores de Edad , Células Amacrinas/citología , Células Amacrinas/fisiología , Animales , Comunicación Celular/fisiología , Células Cultivadas , Citoplasma/fisiología , Genes Reporteros/fisiología , Proteínas Fluorescentes Verdes/genética , Ratones , Células Ganglionares de la Retina/citología , Células Ganglionares de la Retina/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA