Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 79
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Muscle Nerve ; 69(2): 206-212, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38124685

RESUMEN

INTRODUCTION/AIMS: The transcranial magnetic stimulation tests of short-interval intracortical inhibition (SICI) by both conventional amplitude measurements (A-SICI) and threshold-tracking (T-SICI) are important methods to investigate intracortical inhibitory circuits, and T-SICI has been proposed to aid the diagnosis of amyotrophic lateral sclerosis. Beverages containing caffeine are widely consumed, and caffeine has been reported to affect cortical excitability. The aim of this study was to determine whether these SICI tests are affected by caffeine. METHODS: Twenty-four healthy subjects (13 females, 11 males, aged from 19 to 31, mean: 26.2 ± 2.4 years) were studied in a single fixed-dose randomized double-blind placebo-controlled cross-over trial of 200 mg caffeine or placebo ingested as chewing gum. A-SICI and T-SICI, using parallel tracking (T-SICIp), were performed before and after chewing gum. RESULTS: There was no significant change in SICI parameters after placebo in A-SICI (p > .10) or T-SICIp (p > .30), and no significant effect of caffeine was found on A-SICI (p > .10) or T-SICIp (p > .50) for any of the interstimulus intervals. DISCUSSION: There is no need for caffeine abstention before measurements of SICI by either the T-SICI or A-SICI measurements.


Asunto(s)
Excitabilidad Cortical , Corteza Motora , Femenino , Humanos , Masculino , Cafeína/farmacología , Goma de Mascar , Potenciales Evocados Motores/fisiología , Corteza Motora/fisiología , Inhibición Neural/fisiología , Estimulación Magnética Transcraneal/métodos , Adulto Joven , Adulto
2.
Exp Brain Res ; 240(4): 1241-1247, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35192042

RESUMEN

Short-latency afferent inhibition (SAI), which is conventionally measured as a reduction in motor evoked potential amplitude (A-SAI), is of clinical interest as a potential biomarker for cognitive impairment. Since threshold-tracking has some advantages for clinical studies of short-interval cortical inhibition, we have compared A-SAI with a threshold-tracking alternative method (T-SAI). In the T-SAI method, inhibition was calculated by tracking the required TMS intensity for the targeted MEP amplitude (200 uV) both for the test (TMS only) and paired (TMS and peripheral stimulation) stimuli. A-SAI and T-SAI were recorded from 31 healthy subjects using ten stimuli at each of 12 inter-stimulus intervals, once in the morning and again in the afternoon. There were no differences between morning and afternoon recordings. When A-SAI was normalized by log conversion it was closely related to T-SAI. Between subjects, variability was similar for the two techniques, but within-subject variability was significantly smaller for normalized A-SAI. Conventional amplitude measurements appear more sensitive for detecting changes within-subjects, such as in interventional studies, but threshold-tracking may be as sensitive as detecting abnormal SAI in a patient.


Asunto(s)
Corteza Motora , Estimulación Magnética Transcraneal , Vías Aferentes/fisiología , Electromiografía/métodos , Potenciales Evocados Motores/fisiología , Humanos , Corteza Motora/fisiología , Inhibición Neural/fisiología , Tiempo de Reacción/fisiología , Estimulación Magnética Transcraneal/métodos
3.
Eur J Neurol ; 28(9): 3030-3039, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34233060

RESUMEN

BACKGROUND AND PURPOSE: Short-interval intracortical inhibition by threshold tracking (T-SICI) has been proposed as a diagnostic tool for amyotrophic lateral sclerosis (ALS) but has not been compared directly with conventional amplitude measurements (A-SICI). This study compared A-SICI and T-SICI for sensitivity and clinical usefulness as biomarkers for ALS. METHODS: In all, 104 consecutive patients referred with suspicion of ALS were prospectively included and were subsequently divided into 62 patients with motor neuron disease (MND) and 42 patient controls (ALS mimics) by clinical follow-up. T-SICI and A-SICI recorded in the first dorsal interosseus muscle (index test) were compared with recordings from 53 age-matched healthy controls. The reference standard was the Awaji criteria. Clinical scorings, conventional nerve conduction studies and electromyography were also performed on the patients. RESULTS: Motor neuron disease patients had significantly reduced T-SICI and A-SICI compared with the healthy and patient control groups, which were similar. Sensitivity and specificity for discriminating MND patients from patient controls were high (areas under the receiver operating characteristic curves 0.762 and 0.810 for T-SICI and A-SICI respectively at 1-3.5 ms). Paradoxically, T-SICI was most reduced in MND patients with the fewest upper motor neuron (UMN) signs (Spearman ρ = 0.565, p = 4.3 × 10-6 ). CONCLUSIONS: Amplitude-based measure of cortical inhibition and T-SICI are both sensitive measures for the detection of cortical involvement in MND patients and may help early diagnosis of ALS, with T-SICI most abnormal before UMN signs have developed. The gradation in T-SICI from pathological facilitation in patients with minimal UMN signs to inhibition in those with the most UMN signs may be due to progressive degeneration of the subset of UMNs experiencing facilitation.


Asunto(s)
Esclerosis Amiotrófica Lateral , Enfermedad de la Neurona Motora , Esclerosis Amiotrófica Lateral/diagnóstico , Diagnóstico Precoz , Electromiografía , Potenciales Evocados Motores , Humanos , Enfermedad de la Neurona Motora/diagnóstico , Estimulación Magnética Transcraneal
4.
CA Cancer J Clin ; 63(6): 419-37, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24590861

RESUMEN

With a 3-fold increase in the number of cancer survivors noted since the 1970s, there are now over 28 million cancer survivors worldwide. Accordingly, there is a heightened awareness of long-term toxicities and the impact on quality of life following treatment in cancer survivors. This review will address the increasing importance and challenge of chemotherapy-induced neurotoxicity, with a focus on neuropathy associated with the treatment of breast cancer, colorectal cancer, testicular cancer, and hematological cancers. An overview of the diagnosis, symptomatology, and pathophysiology of chemotherapy-induced peripheral neuropathy will be provided, with a critical analysis of assessment strategies, neuroprotective approaches, and potential treatments. The review will concentrate on neuropathy associated with taxanes, platinum compounds, vinca alkaloids, thalidomide, and bortezomib, providing clinical information specific to these chemotherapies.


Asunto(s)
Antineoplásicos/efectos adversos , Síndromes de Neurotoxicidad/etiología , Ensayos Clínicos como Asunto , Diagnóstico Diferencial , Humanos , Fármacos Neuroprotectores/uso terapéutico , Síndromes de Neurotoxicidad/diagnóstico , Síndromes de Neurotoxicidad/fisiopatología , Síndromes de Neurotoxicidad/terapia , Calidad de Vida , Factores de Riesgo , Sobrevivientes
5.
Brain ; 142(3): 760-770, 2019 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-30698738

RESUMEN

A common presentation of inherited prion disease is Gerstmann-Sträussler-Scheinker syndrome, typically presenting with gait ataxia and painful dysaesthesiae in the legs evolving over 2-5 years. The most frequent molecular genetic diagnosis is a P102L mutation of the prion protein gene (PRNP). There is no explanation for why this clinical syndrome is so distinct from Creutzfeldt-Jakob disease, and biomarkers of the early stages of disease have not been developed. Here we aimed, first, at determining if quantitative neurophysiological assessments could predict clinical diagnosis or disability and monitor progression and, second, to determine the neuropathological basis of the initial clinical and neurophysiological findings. We investigated subjects known to carry the P102L mutation in the longitudinal observational UK National Prion Monitoring Cohort study, with serial assessments of clinical features, peripheral nerve conduction, H and F components, threshold tracking and histamine flare and itch response and neuropathological examination in some of those who died. Twenty-three subjects were studied over a period of up to 12 years, including 65 neurophysiological assessments at the same department. Six were symptomatic throughout and six became symptomatic during the study. Neurophysiological abnormalities were restricted to the lower limbs. In symptomatic patients around the time of, or shortly after, symptom onset the H-reflex was lost. Lower limb thermal thresholds were at floor/ceiling in some at presentation, in others thresholds progressively deteriorated. Itch sensation to histamine injection was lost in most symptomatic patients. In six patients with initial assessments in the asymptomatic stage of the disease, a progressive deterioration in the ability to detect warm temperatures in the feet was observed prior to clinical diagnosis and the onset of disability. All of these six patients developed objective abnormalities of either warm or cold sensation prior to the onset of significant symptoms or clinical diagnosis. Autopsy examination in five patients (including two not followed clinically) showed prion protein in the substantia gelatinosa, spinothalamic tracts, posterior columns and nuclei and in the neuropil surrounding anterior horn cells. In conclusion, sensory symptoms and loss of reflexes in Gerstmann-Sträussler-Scheinker syndrome can be explained by neuropathological changes in the spinal cord. We conclude that the sensory symptoms and loss of lower limb reflexes in Gerstmann-Sträussler-Scheinker syndrome is due to pathology in the caudal spinal cord. Neuro-physiological measures become abnormal around the time of symptom onset, prior to diagnosis, and may be of value for improved early diagnosis and for recruitment and monitoring of progression in clinical trials.


Asunto(s)
Enfermedades por Prión/patología , Proteínas Priónicas/genética , Médula Espinal/patología , Adulto , Anciano , Biomarcadores/sangre , Encéfalo/patología , Estudios de Cohortes , Síndrome de Creutzfeldt-Jakob/patología , Femenino , Enfermedad de Gerstmann-Straussler-Scheinker/patología , Humanos , Estudios Longitudinales , Masculino , Persona de Mediana Edad , Mutación , Neurofisiología , Linaje , Proteínas Priónicas/metabolismo , Priones/genética
6.
PLoS Pathog ; 13(12): e1006813, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-29284065

RESUMEN

Upon reactivation from latency and during lytic infections in neurons, alphaherpesviruses assemble cytosolic capsids, capsids associated with enveloping membranes, and transport vesicles harboring fully enveloped capsids. It is debated whether capsid envelopment of herpes simplex virus (HSV) is completed in the soma prior to axonal targeting or later, and whether the mechanisms are the same in neurons derived from embryos or from adult hosts. We used HSV mutants impaired in capsid envelopment to test whether the inner tegument proteins pUL36 or pUL37 necessary for microtubule-mediated capsid transport were sufficient for axonal capsid targeting in neurons derived from the dorsal root ganglia of adult mice. Such neurons were infected with HSV1-ΔUL20 whose capsids recruited pUL36 and pUL37, with HSV1-ΔUL37 whose capsids associate only with pUL36, or with HSV1-ΔUL36 that assembles capsids lacking both proteins. While capsids of HSV1-ΔUL20 were actively transported along microtubules in epithelial cells and in the somata of neurons, those of HSV1-ΔUL36 and -ΔUL37 could only diffuse in the cytoplasm. Employing a novel image analysis algorithm to quantify capsid targeting to axons, we show that only a few capsids of HSV1-ΔUL20 entered axons, while vesicles transporting gD utilized axonal transport efficiently and independently of pUL36, pUL37, or pUL20. Our data indicate that capsid motility in the somata of neurons mediated by pUL36 and pUL37 does not suffice for targeting capsids to axons, and suggest that capsid envelopment needs to be completed in the soma prior to targeting of herpes simplex virus to the axons, and to spreading from neurons to neighboring cells.


Asunto(s)
Herpesvirus Humano 1/fisiología , Herpesvirus Humano 1/patogenicidad , Neuronas/virología , Animales , Transporte Axonal , Axones/ultraestructura , Axones/virología , Cápside/fisiología , Cápside/ultraestructura , Células Cultivadas , Chlorocebus aethiops , Ganglios Espinales/virología , Herpes Simple/virología , Herpesvirus Humano 1/genética , Interacciones Huésped-Patógeno , Humanos , Ratones , Microscopía Electrónica de Transmisión , Movimiento/fisiología , Mutación , Neuronas/ultraestructura , Células Vero , Proteínas Virales/genética , Proteínas Virales/fisiología , Proteínas Estructurales Virales/genética , Proteínas Estructurales Virales/fisiología
7.
J Neurosci ; 37(39): 9380-9388, 2017 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-28847806

RESUMEN

The location of a sensory cortex for temperature perception remains a topic of substantial debate. Both the parietal-opercular (SII) and posterior insula have been consistently implicated in thermosensory processing, but neither region has yet been identified as the locus of fine temperature discrimination. Using a perceptual learning paradigm in male and female humans, we show improvement in discrimination accuracy for subdegree changes in both warmth and cool detection over 5 d of repetitive training. We found that increases in discriminative accuracy were specific to the temperature (cold or warm) being trained. Using structural imaging to look for plastic changes associated with perceptual learning, we identified symmetrical increases in gray matter volume in the SII cortex. Furthermore, we observed distinct, adjacent regions for cold and warm discrimination, with cold discrimination having a more anterior locus than warm. The results suggest that thermosensory discrimination is supported by functionally and anatomically distinct temperature-specific modules in the SII cortex.SIGNIFICANCE STATEMENT We provide behavioral and neuroanatomical evidence that perceptual learning is possible within the temperature system. We show that structural plasticity localizes to parietal-opercular (SII), and not posterior insula, providing the best evidence to date resolving a longstanding debate about the location of putative "temperature cortex." Furthermore, we show that cold and warm pathways are behaviorally and anatomically dissociable, suggesting that the temperature system has distinct temperature-dependent processing modules.


Asunto(s)
Aprendizaje Discriminativo , Lóbulo Frontal/fisiología , Sustancia Gris/diagnóstico por imagen , Lóbulo Parietal/fisiología , Sensación Térmica , Adolescente , Adulto , Femenino , Lóbulo Frontal/diagnóstico por imagen , Sustancia Gris/fisiología , Calor , Humanos , Masculino , Lóbulo Parietal/diagnóstico por imagen
9.
J Neurophysiol ; 115(6): 3156-61, 2016 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-27052582

RESUMEN

Sensory feedback from cutaneous mechanoreceptors in the fingertips is important in effective object manipulation, allowing appropriate scaling of grip and load forces during precision grip. However, the role of mechanoreceptor subtypes in these tasks remains incompletely understood. To address this issue, psychophysical tasks that may specifically assess function of type I fast-adapting (FAI) and slowly adapting (SAI) mechanoreceptors were used with object manipulation experiments to examine the regulation of grip force control in an experimental model of graded reduction in tactile sensitivity (healthy volunteers wearing 2 layers of latex gloves). With gloves, tactile sensitivity decreased significantly from 1.9 ± 0.4 to 12.3 ± 2.2 µm in the Bumps task assessing function of FAI afferents but not in a grating orientation task assessing SAI afferents (1.6 ± 0.1 to 1.8 ± 0.2 mm). Six axis force/torque sensors measured peak grip (PGF) and load (PLF) forces generated by the fingertips during a grip-lift task. With gloves there was a significant increase of PGF (14 ± 6%), PLF (17 ± 5%), and grip and load force rates (26 ± 8%, 20 ± 8%). A variable-weight series task was used to examine sensorimotor memory. There was a 20% increase in PGF when the lift of a light object was preceded by a heavy relative to a light object. This relationship was not significantly altered when lifting with gloves, suggesting that the addition of gloves did not change sensorimotor memory effects. We conclude that FAI fibers may be important for the online force scaling but not for the buildup of a sensorimotor memory.


Asunto(s)
Adaptación Fisiológica/fisiología , Fuerza de la Mano/fisiología , Mecanorreceptores/fisiología , Desempeño Psicomotor/fisiología , Percepción del Tacto/fisiología , Adulto , Retroalimentación Sensorial , Femenino , Dedos/inervación , Humanos , Masculino , Psicofísica , Factores de Tiempo
10.
N Engl J Med ; 369(20): 1904-14, 2013 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-24224623

RESUMEN

BACKGROUND: Human prion diseases, although variable in clinicopathological phenotype, generally present as neurologic or neuropsychiatric conditions associated with rapid multifocal central nervous system degeneration that is usually dominated by dementia and cerebellar ataxia. Approximately 15% of cases of recognized prion disease are inherited and associated with coding mutations in the gene encoding prion protein (PRNP). The availability of genetic diagnosis has led to a progressive broadening of the recognized spectrum of disease. METHODS: We used longitudinal clinical assessments over a period of 20 years at one hospital combined with genealogical, neuropsychological, neurophysiological, neuroimaging, pathological, molecular genetic, and biochemical studies, as well as studies of animal transmission, to characterize a novel prion disease in a large British kindred. We studied 6 of 11 affected family members in detail, along with autopsy or biopsy samples obtained from 5 family members. RESULTS: We identified a PRNP Y163X truncation mutation and describe a distinct and consistent phenotype of chronic diarrhea with autonomic failure and a length-dependent axonal, predominantly sensory, peripheral polyneuropathy with an onset in early adulthood. Cognitive decline and seizures occurred when the patients were in their 40s or 50s. The deposition of prion protein amyloid was seen throughout peripheral organs, including the bowel and peripheral nerves. Neuropathological examination during end-stage disease showed the deposition of prion protein in the form of frequent cortical amyloid plaques, cerebral amyloid angiopathy, and tauopathy. A unique pattern of abnormal prion protein fragments was seen in brain tissue. Transmission studies in laboratory mice were negative. CONCLUSIONS: Abnormal forms of prion protein that were found in multiple peripheral tissues were associated with diarrhea, autonomic failure, and neuropathy. (Funded by the U.K. Medical Research Council and others.).


Asunto(s)
Enfermedades del Sistema Nervioso Autónomo/etiología , Encéfalo/patología , Diarrea/etiología , Enfermedades por Prión/genética , Priones/genética , Animales , Enfermedades del Sistema Nervioso Autónomo/patología , Femenino , Humanos , Estudios Longitudinales , Masculino , Ratones , Ratones Transgénicos , Mutación , Linaje , Fenotipo , Placa Amiloide/patología , Enfermedades por Prión/complicaciones , Enfermedades por Prión/patología , Enfermedades por Prión/transmisión , Proteínas Priónicas
11.
Brain ; 137(Pt 11): 2922-37, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25216747

RESUMEN

Charcot-Marie-Tooth disease type 1A is the most frequent inherited peripheral neuropathy. It is generally due to heterozygous inheritance of a partial chromosomal duplication resulting in over-expression of PMP22. A key feature of Charcot-Marie-Tooth disease type 1A is secondary death of axons. Prevention of axonal loss is therefore an important target of clinical intervention. We have previously identified a signalling mechanism that promotes axon survival and prevents neuron death in mechanically injured peripheral nerves. This work suggested that Schwann cells respond to injury by activating/enhancing trophic support for axons through a mechanism that depends on upregulation of the transcription factor c-Jun in Schwann cells, resulting in the sparing of axons that would otherwise die. As c-Jun orchestrates Schwann cell support for distressed neurons after mechanical injury, we have now asked: do Schwann cells also activate a c-Jun dependent neuron-supportive programme in inherited demyelinating disease? We tested this by using the C3 mouse model of Charcot-Marie-Tooth disease type 1A. In line with our previous findings in humans with Charcot-Marie-Tooth disease type 1A, we found that Schwann cell c-Jun was elevated in (uninjured) nerves of C3 mice. We determined the impact of this c-Jun activation by comparing C3 mice with double mutant mice, namely C3 mice in which c-Jun had been conditionally inactivated in Schwann cells (C3/Schwann cell-c-Jun(-/-) mice), using sensory-motor tests and electrophysiological measurements, and by counting axons in proximal and distal nerves. The results indicate that c-Jun elevation in the Schwann cells of C3 nerves serves to prevent loss of myelinated sensory axons, particularly in distal nerves, improve behavioural symptoms, and preserve F-wave persistence. This suggests that Schwann cells have two contrasting functions in Charcot-Marie-Tooth disease type 1A: on the one hand they are the genetic source of the disease, on the other, they respond to it by mounting a c-Jun-dependent response that significantly reduces its impact. Because axonal death is a central feature of much nerve pathology it will be important to establish whether an axon-supportive Schwann cell response also takes place in other conditions. Amplification of this axon-supportive mechanism constitutes a novel target for clinical intervention that might be useful in Charcot-Marie-Tooth disease type 1A and other neuropathies that involve axon loss.


Asunto(s)
Axones/metabolismo , Enfermedad de Charcot-Marie-Tooth/metabolismo , Enfermedades Desmielinizantes/metabolismo , Neuronas Motoras/metabolismo , Proteínas Proto-Oncogénicas c-jun/metabolismo , Células de Schwann/metabolismo , Animales , Axones/patología , Conducta Animal/fisiología , Enfermedad de Charcot-Marie-Tooth/fisiopatología , Enfermedades Desmielinizantes/patología , Modelos Animales de Enfermedad , Ratones , Ratones Endogámicos C3H , Ratones Noqueados , Neuronas Motoras/patología
12.
Brain ; 137(Pt 12): 3171-85, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25348630

RESUMEN

Mutations in the skeletal muscle channel (SCN4A), encoding the Nav1.4 voltage-gated sodium channel, are causative of a variety of muscle channelopathies, including non-dystrophic myotonias and periodic paralysis. The effects of many of these mutations on channel function have been characterized both in vitro and in vivo. However, little is known about the consequences of SCN4A mutations downstream from their impact on the electrophysiology of the Nav1.4 channel. Here we report the discovery of a novel SCN4A mutation (c.1762A>G; p.I588V) in a patient with myotonia and periodic paralysis, located within the S1 segment of the second domain of the Nav1.4 channel. Using N-ethyl-N-nitrosourea mutagenesis, we generated and characterized a mouse model (named draggen), carrying the equivalent point mutation (c.1744A>G; p.I582V) to that found in the patient with periodic paralysis and myotonia. Draggen mice have myotonia and suffer from intermittent hind-limb immobility attacks. In-depth characterization of draggen mice uncovered novel systemic metabolic abnormalities in Scn4a mouse models and provided novel insights into disease mechanisms. We discovered metabolic alterations leading to lean mice, as well as abnormal AMP-activated protein kinase activation, which were associated with the immobility attacks and may provide a novel potential therapeutic target.


Asunto(s)
Proteínas Quinasas Activadas por AMP/genética , Canalopatías/genética , Mutación/genética , Miotonía/genética , Trastornos Miotónicos/genética , Canal de Sodio Activado por Voltaje NAV1.4/genética , Parálisis Periódicas Familiares/genética , Animales , Humanos , Ratones , Linaje
13.
J Neurosci ; 33(13): 5638-46, 2013 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-23536078

RESUMEN

Predictions about sensory input exert a dominant effect on what we perceive, and this is particularly true for the experience of pain. However, it remains unclear what component of prediction, from an information-theoretic perspective, controls this effect. We used a vicarious pain observation paradigm to study how the underlying statistics of predictive information modulate experience. Subjects observed judgments that a group of people made to a painful thermal stimulus, before receiving the same stimulus themselves. We show that the mean observed rating exerted a strong assimilative effect on subjective pain. In addition, we show that observed uncertainty had a specific and potent hyperalgesic effect. Using computational functional magnetic resonance imaging, we found that this effect correlated with activity in the periaqueductal gray. Our results provide evidence for a novel form of cognitive hyperalgesia relating to perceptual uncertainty, induced here by vicarious observation, with control mediated by the brainstem pain modulatory system.


Asunto(s)
Percepción del Dolor/fisiología , Dolor/patología , Dolor/psicología , Sustancia Gris Periacueductal/fisiopatología , Incertidumbre , Mapeo Encefálico , Simulación por Computador , Femenino , Humanos , Procesamiento de Imagen Asistido por Computador , Imagen por Resonancia Magnética , Masculino , Modelos Biológicos , Oxígeno/sangre , Dimensión del Dolor , Umbral del Dolor , Sustancia Gris Periacueductal/irrigación sanguínea , Estimulación Física/efectos adversos
14.
Muscle Nerve ; 50(3): 366-71, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24395492

RESUMEN

INTRODUCTION: Charcot-Marie-Tooth (CMT) disease type 1A is the most common form of CMT. The main clinical features are distal weakness, sensory loss, and skeletal deformities. Although pain is a frequent complaint, small fiber involvement in CMT1A has not been studied extensively. METHODS: We assessed pain and small fiber involvement in 49 CMT1A patients using a variety of pain scales, pain questionnaires, and thermal thresholds. RESULTS: Forty-three of 49 patients (88%) complained of pain. The pain was localized to the feet in 61% of patients. Only 18% of patients had neuropathic pain. Cold and warm detection thresholds were elevated in 53% and 12% of patients, respectively. CONCLUSIONS: Our findings confirm that CMT1A patients have significant pain, which is more likely to be multifactorial in origin and suggests that a proportion of patients have small fiber dysfunction affecting mainly thinly myelinated Aδ fibers.


Asunto(s)
Enfermedad de Charcot-Marie-Tooth/complicaciones , Enfermedad de Charcot-Marie-Tooth/patología , Fibras Nerviosas/patología , Dolor/etiología , Adulto , Estudios de Cohortes , Frío , Intervalos de Confianza , Femenino , Calor , Humanos , Masculino , Persona de Mediana Edad , Dimensión del Dolor , Umbral del Dolor , Encuestas y Cuestionarios , Sensación Térmica/fisiología , Adulto Joven
15.
Nature ; 451(7177): 460-4, 2008 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-18185516

RESUMEN

Stem cell self-renewal implies proliferation under continued maintenance of multipotency. Small changes in numbers of stem cells may lead to large differences in differentiated cell numbers, resulting in significant physiological consequences. Proliferation is typically regulated in the G1 phase, which is associated with differentiation and cell cycle arrest. However, embryonic stem (ES) cells may lack a G1 checkpoint. Regulation of proliferation in the 'DNA damage' S/G2 cell cycle checkpoint pathway is known for its role in the maintenance of chromatin structural integrity. Here we show that autocrine/paracrine gamma-aminobutyric acid (GABA) signalling by means of GABA(A) receptors negatively controls ES cell and peripheral neural crest stem (NCS) cell proliferation, preimplantation embryonic growth and proliferation in the boundary-cap stem cell niche, resulting in an attenuation of neuronal progenies from this stem cell niche. Activation of GABA(A) receptors leads to hyperpolarization, increased cell volume and accumulation of stem cells in S phase, thereby causing a rapid decrease in cell proliferation. GABA(A) receptors signal through S-phase checkpoint kinases of the phosphatidylinositol-3-OH kinase-related kinase family and the histone variant H2AX. This signalling pathway critically regulates proliferation independently of differentiation, apoptosis and overt damage to DNA. These results indicate the presence of a fundamentally different mechanism of proliferation control in these stem cells, in comparison with most somatic cells, involving proteins in the DNA damage checkpoint pathway.


Asunto(s)
Histonas/metabolismo , Receptores de GABA-A/metabolismo , Células Madre/citología , Células Madre/metabolismo , Animales , Comunicación Autocrina , Blastocisto/citología , Blastocisto/enzimología , Blastocisto/metabolismo , Recuento de Células , Ciclo Celular , Línea Celular , Proliferación Celular , Tamaño de la Célula , Daño del ADN , Agonistas de Receptores de GABA-A , Antagonistas de Receptores de GABA-A , Histonas/deficiencia , Histonas/genética , Ratones , Cresta Neural/citología , Cresta Neural/metabolismo , Comunicación Paracrina , Técnicas de Placa-Clamp , Fosfatidilinositol 3-Quinasas/metabolismo , Fosforilación , Receptores de GABA-A/genética , Células Madre/enzimología , Ácido gamma-Aminobutírico/metabolismo
16.
Neurophysiol Clin ; 54(1): 102940, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38382141

RESUMEN

BACKGROUND: The mechanism of Short-Latency Afferent Inhibition (SAI) is relatively well understood. In contrast, Long-Latency Afferent Inhibition (LAI) has not been as extensively studied as SAI, and its underlying mechanism remains unclear. OBJECTIVE/HYPOTHESIS: This study had two primary objectives: first, to determine the optimal ISIs for LAI measured by amplitude changes (A-LAI) using high-resolution ISI ranges; and second, to compare measurements of LAI by threshold-tracking (T-LAI). METHODS: Twenty-eight healthy volunteers (12 males aged 24- 45 years) participated in the study. Paired peripheral electrical and transcranial magnetic stimulation (TMS) stimuli (TS1mv) were applied at varying (ISIs)- 100, 200, 250, 300, 350, 400, 450, 500, 550, 600, 700, 800, 900, 1000 ms. RESULTS: Both A-LAI and T-LAI showed that LAI decreased progressively from a peak at 200 or 250 ms to 1000 ms. Using the A-LAI method, pronounced inhibition was observed at three specific ISIs: 100 ms, 250 ms and 450 ms. When A-LAI values were converted to equivalent threshold changes, they did not differ significantly from T-LAI. Reliability at distinguishing individuals, as indicated by intraclass correlation coefficient (ICC) was greater for A-LAI, with a peak value of 0.82 at 250 ms. CONCLUSION(S): The study demonstrates that ISIs of 100 ms and 250 ms can be reliably used in amplitude measurement LAI. The study demonstrates that both LAI measurements record a similar decline of inhibition with increasing ISI.


Asunto(s)
Inhibición Neural , Estimulación Magnética Transcraneal , Masculino , Humanos , Vías Aferentes/fisiología , Reproducibilidad de los Resultados , Inhibición Neural/fisiología , Tiempo de Reacción/fisiología , Potenciales Evocados Motores/fisiología
17.
Ann Clin Transl Neurol ; 11(7): 1887-1896, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38894662

RESUMEN

OBJECTIVE: There is a need for sensitive biomarkers in amyotrophic lateral sclerosis (ALS), to enable earlier diagnosis and to help assess potential treatments. The main objective of this study was to compare two potential biomarkers, threshold-tracking short-interval cortical inhibition (T-SICI), which has shown promise as a diagnostic aid, and neurofilament light chains (NfL). METHODS: Ninety-seven patients with ALS (mean age 67.1 ± 11.5 years) and 53 ALS mimics (aged 62.4 ± 12.9) were included. Mean disease duration was 14 months ±14.1. Patients were evaluated with revised ALS functional rating score (ALSFRS-R), Penn upper motor neuron score (UMNS), muscle strength using the Medical Research Council (MRC) score and examined with T-SICI, quantitative electromyography (EMG), and NfL measured in spinal fluid. RESULTS: NfL increased with increasing UMNS (rho = 0.45, p = 8.2 × 10-6) whereas T-SICI at 2.5 ms paradoxically increased toward normal values (rho = 0.53, p = 1.9 × 10-7). However, these two measures were uncorrelated. Discrimination between ALS patients and mimics was best for NfL (area under ROC curve 0.842, sensitivity 84.9%, specificity 83.5%), compared with T-SICI (0.675, 39.6%, 91.8%). For the patients with no UMN signs, NfL also discriminated best (0.884, 89.3%, 82.6%), compared with T-SICI (0.811, 71.4%, 82.6%). However, when combining NfL and T-SICI, higher AUCs of 0.854 and 0.922 and specificities of 93.8 and 100 were found when considering all patients and patients with no UMN signs, respectively. INTERPRETATION: Both T-SICI and NfL correlated with UMN involvement and combined, they provided a strong discrimination between ALS patients and ALS mimics.


Asunto(s)
Esclerosis Amiotrófica Lateral , Biomarcadores , Proteínas de Neurofilamentos , Estimulación Magnética Transcraneal , Humanos , Esclerosis Amiotrófica Lateral/diagnóstico , Esclerosis Amiotrófica Lateral/fisiopatología , Persona de Mediana Edad , Masculino , Femenino , Anciano , Estimulación Magnética Transcraneal/métodos , Electromiografía , Potenciales Evocados Motores/fisiología
18.
Lancet Neurol ; 23(6): 636-648, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38760101

RESUMEN

Anthropogenic climate change is affecting people's health, including those with neurological and psychiatric diseases. Currently, making inferences about the effect of climate change on neurological and psychiatric diseases is challenging because of an overall sparsity of data, differing study methods, paucity of detail regarding disease subtypes, little consideration of the effect of individual and population genetics, and widely differing geographical locations with the potential for regional influences. However, evidence suggests that the incidence, prevalence, and severity of many nervous system conditions (eg, stroke, neurological infections, and some mental health disorders) can be affected by climate change. The data show broad and complex adverse effects, especially of temperature extremes to which people are unaccustomed and wide diurnal temperature fluctuations. Protective measures might be possible through local forecasting. Few studies project the future effects of climate change on brain health, hindering policy developments. Robust studies on the threats from changing climate for people who have, or are at risk of developing, disorders of the nervous system are urgently needed.


Asunto(s)
Cambio Climático , Enfermedades del Sistema Nervioso , Humanos , Enfermedades del Sistema Nervioso/epidemiología
19.
J Neurol Neurosurg Psychiatry ; 84(11): 1255-7, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23475819

RESUMEN

OBJECTIVE: To describe the clinical and genetic findings in a family affected by neurodevelopmental delay and cerebellar ataxia. METHODS: The affected mother and her two children underwent clinical assessments followed by radiological, neurophysiological and cytogenetic investigations. RESULTS: All three affected members exhibited varying degrees of delay in attaining motor and cognitive milestones, along with learning difficulties and cerebellar ataxia. All three harboured a new 670 kb deletion of chromosome 12q21. Two genes, KCNC2 and ATXN7L3B, lie within the deleted region. CONCLUSIONS: This family's complex phenotype is associated with a new chromosomal deletion, which suggests potential roles for the two genes, KCNC2 and ATXN7L3B, in human neurological disease.


Asunto(s)
Ataxia Cerebelosa/diagnóstico , Ataxia Cerebelosa/genética , Deleción Cromosómica , Cromosomas Humanos Par 12/genética , Discapacidades del Desarrollo/diagnóstico , Discapacidades del Desarrollo/genética , Canales de Potasio Shaw/genética , Adulto , Niño , Electromiografía , Femenino , Humanos , Hibridación Fluorescente in Situ , Trastornos del Desarrollo del Lenguaje/diagnóstico , Trastornos del Desarrollo del Lenguaje/genética , Discapacidades para el Aprendizaje/diagnóstico , Discapacidades para el Aprendizaje/genética , Masculino , Hipotonía Muscular/diagnóstico , Hipotonía Muscular/genética , Análisis de Secuencia por Matrices de Oligonucleótidos , Linaje , Fenotipo , Análisis de Secuencia de ADN , Factores de Transcripción
20.
Nat Rev Cancer ; 2(3): 201-9, 2002 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-11990856

RESUMEN

Pain is the most disruptive influence on the quality of life of cancer patients. Although significant advances are being made in cancer treatment and diagnosis, the basic neurobiology of cancer pain is poorly understood. New insights into these mechanisms are now arising from animal models, and have the potential to fundamentally change the way that cancer pain is controlled.


Asunto(s)
Vías Aferentes/fisiopatología , Neoplasias/fisiopatología , Dolor , Humanos , Neuronas Aferentes/fisiología , Nociceptores/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA