Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
J Biol Chem ; 300(7): 107444, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38838772

RESUMEN

Candida albicans is an opportunistic fungal pathogen that can switch between yeast and hyphal morphologies depending on the environmental cues it receives. The switch to hyphal form is crucial for the establishment of invasive infections. The hyphal form is also characterized by the cell surface expression of hyphae-specific proteins, many of which are GPI-anchored and important determinants of its virulence. The coordination between hyphal morphogenesis and the expression of GPI-anchored proteins is made possible by an interesting cross-talk between GPI biosynthesis and the cAMP-PKA signaling cascade in the fungus; a parallel interaction is not found in its human host. On the other hand, in the nonpathogenic yeast, Saccharomyces cerevisiae, GPI biosynthesis is shut down when filamentation is activated and vice versa. This too is achieved by a cross-talk between GPI biosynthesis and cAMP-PKA signaling. How are diametrically opposite effects obtained from the cross-talk between two reasonably well-conserved pathways present ubiquitously across eukarya? This Review attempts to provide a model to explain these differences. In order to do so, it first provides an overview of the two pathways for the interested reader, highlighting the similarities and differences that are observed in C. albicans versus the well-studied S. cerevisiae model, before going on to explain how the different mechanisms of regulation are effected. While commonalities enable the development of generalized theories, it is hoped that a more nuanced approach, that takes into consideration species-specific differences, will enable organism-specific understanding of these processes and contribute to the development of targeted therapies.


Asunto(s)
Candida albicans , Proteínas Quinasas Dependientes de AMP Cíclico , AMP Cíclico , Hifa , Saccharomyces cerevisiae , Transducción de Señal , Candida albicans/metabolismo , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , AMP Cíclico/metabolismo , Hifa/metabolismo , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/genética , Glicosilfosfatidilinositoles/metabolismo , Glicosilfosfatidilinositoles/biosíntesis , Humanos , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética
2.
Artículo en Inglés | MEDLINE | ID: mdl-32081427

RESUMEN

GPI anchored proteins (GPI-APs) act at the frontiers of cells, decoding environmental cues and determining host-pathogen interactions in several lower eukaryotes. They are also essential for viability in lower eukaryotes. The GPI biosynthetic pathway begins at the ER and follows a roughly linear pathway to generate the complete precursor (CP) glycolipid. The GPI transamidase (GPIT) transfers this glycolipid to the C-terminal end of newly translated proteins after removing their GPI attachment signal sequence (SS). The GPIT subunit that cleaves SS is Gpi8, a protein with a conserved Cys/His catalytic dyad typical of cysteine proteases. A CaGPI8 heterozygous mutant accumulates CPs and has reduced cell surface GPI-APs. Using a simple cell-free assay, we demonstrate that the heterozygous CaGPI8 strain has low endopeptidase activity as well. The revertant strain is restored in all these phenotypes. CaGpi8 is also shown to be a metalloenzyme, whose protease activity is sensitive to agents that modify Cys/His residues.

3.
Yeast ; 37(1): 63-72, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31845370

RESUMEN

ScGpi12 is a 304 amino residue long endoplasmic reticulum membrane protein, which participates in the de-N-acetylation of N-acetylglucosaminyl phosphatidylinositol to produce glucosaminyl phosphatidylinositol in the second step of GPI anchor biosynthesis pathway in Saccharomyces cerevisiae. ScGpi12 was cloned in a pMAL-c2x vector and expressed heterologously in Rosetta-gami (DE3) strain of E. coli. Affinity purification of the protein yielded low amounts of the MBP-tagged enzyme, which was active. To the best of our knowledge, this is the first successful purification of full-length Gpi12 enzyme, without the accompanying GroEL that was seen in other studies. The presence of the tag did not greatly alter the activity of the enzyme. ScGpi12 was optimally active in the pH range of 6.5-8.5 and at 30 °C. It was not sensitive to treatment with EDTA but was stimulated by multiple divalent cations. The divalent cation did not alter the pH profile of the enzyme, suggesting no role of the divalent metal in creating a nucleophile for catalysis. Divalent cations did, however, enhance the turnover number of the enzyme for its substrate, suggesting that they are probably required for the production of a catalytically competent active site by bringing the active site residues within optimum distance of the substrate for catalysis.


Asunto(s)
Acetilesterasa/metabolismo , Glicosilfosfatidilinositoles/biosíntesis , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/genética , Acetilesterasa/genética , Acetilglucosamina/análogos & derivados , Acetilglucosamina/metabolismo , Vías Biosintéticas , Catálisis , Clonación Molecular , Retículo Endoplásmico/enzimología , Escherichia coli/genética , Cinética , Fosfatidilinositoles/metabolismo , Especificidad por Sustrato
4.
J Biol Chem ; 293(31): 12222-12238, 2018 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-29907567

RESUMEN

The ability of Candida albicans to switch between yeast to hyphal form is a property that is primarily associated with the invasion and virulence of this human pathogenic fungus. Several glycosylphosphatidylinositol (GPI)-anchored proteins are expressed only during hyphal morphogenesis. One of the major pathways that controls hyphal morphogenesis is the Ras-signaling pathway. We examine the cross-talk between GPI anchor biosynthesis and Ras signaling in C. albicans. We show that the first step of GPI biosynthesis is activated by Ras in C. albicans This is diametrically opposite to what is reported in Saccharomyces cerevisiae Of the two C. albicans Ras proteins, CaRas1 alone activates GPI-GnT activity; activity is further stimulated by constitutively activated CaRas1. CaRas1 localized to the cytoplasm or endoplasmic reticulum (ER) is sufficient for GPI-GnT activation. Of the six subunits of the GPI-N-acetylglucosaminyltransferase (GPI-GnT) that catalyze the first step of GPI biosynthesis, CaGpi2 is the key player involved in activating Ras signaling and hyphal morphogenesis. Activation of Ras signaling is independent of the catalytic competence of GPI-GnT. This too is unlike what is observed in S. cerevisiae where multiple subunits were identified as inhibiting Ras2. Fluorescence resonance energy transfer (FRET) studies indicate a specific physical interaction between CaRas1 and CaGpi2 in the ER, which would explain the ability of CaRas1 to activate GPI-GnT. CaGpi2, in turn, promotes activation of the Ras-signaling pathway and hyphal morphogenesis. The Cagpi2 mutant is also more susceptible to macrophage-mediated killing, and macrophage cells show better survival when co-cultured with Cagpi2.


Asunto(s)
Candida albicans/enzimología , Proteínas Fúngicas/metabolismo , Glicosilfosfatidilinositoles/biosíntesis , N-Acetilglucosaminiltransferasas/metabolismo , Proteínas ras/metabolismo , Candida albicans/genética , Candida albicans/metabolismo , Retículo Endoplásmico/enzimología , Retículo Endoplásmico/genética , Retículo Endoplásmico/metabolismo , Proteínas Fúngicas/genética , Hifa/enzimología , Hifa/genética , Hifa/metabolismo , N-Acetilglucosaminiltransferasas/genética , Transporte de Proteínas , Transducción de Señal , Proteínas ras/genética
5.
Biochem Biophys Res Commun ; 517(4): 755-761, 2019 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-31402117

RESUMEN

Ras proteins are highly conserved small GTPases in eukaryotes. GTP-bound Ras binds to effectors to trigger signaling cascades. In order to understand how extensive is the functional homology between the highly homologous proteins, S. cerevisiae Ras2 and C. albicans Ras1, we examined whether ScRas2 could functionally complement CaRas1 in activating hyphal morphogenesis as well as GPI anchor biosynthesis. We show that ScRas2 functionally complements CaRas1 in rescuing growth as well as activating hyphal growth, a process that involves plasma membrane localized Ras activating cAMP/PKA signaling via Cyr1. However, ScRas2 is unable to activate the GPI-N-acetylglucosaminyl transferase (GPI-GnT) which catalyzes the first step of GPI biosynthesis. That CaRas1 alone activates GPI-GnT and not ScRas2 suggests that this process is cAMP independent. Interestingly, CaRas1 transcriptionally activates CaGPI2, encoding a GPI-GnT subunit that has been shown to interact with CaRas1 physically. In turn, CaGPI2 downregulates CaGPI19, encoding another GPI-GnT subunit. This has direct consequences for expression of CaERG11, encoding the target of azole antifungals. This effect too is specific to CaRas1 and ScRas2 is unable to replicate it.


Asunto(s)
Candida albicans/metabolismo , Glicosilfosfatidilinositoles/biosíntesis , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas ras/metabolismo , Secuencia de Aminoácidos , AMP Cíclico/biosíntesis , Ergosterol/biosíntesis , Proteínas Fúngicas/metabolismo , Prueba de Complementación Genética , Hifa/crecimiento & desarrollo , Hifa/metabolismo , Saccharomyces cerevisiae/crecimiento & desarrollo , Proteínas de Saccharomyces cerevisiae/química , Homología de Secuencia de Aminoácido , Proteínas ras/química
6.
IUBMB Life ; 70(5): 355-383, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29679465

RESUMEN

Glycosylphosphatidylinositol (GPI)-anchored proteins (GPI-APs) are present ubiquitously at the cell surface in all eukaryotes. They play a crucial role in the interaction of the cell with its external environment, allowing the cell to receive signals, respond to challenges, and mediate adhesion. In yeast and fungi, they also participate in the structural integrity of the cell wall and are often essential for survival. Roughly four decades after the discovery of the first GPI-APs, this review provides an overview of the insights gained from studies of the GPI biosynthetic pathway and the future challenges in the field. In particular, we focus on the biosynthetic pathway in Saccharomyces cerevisiae, which has for long been studied as a model organism. Where available, we also provide information about the GPI biosynthetic steps in other yeast/ fungi. Although the core structure of the GPI anchor is conserved across organisms, several variations are built into the biosynthetic pathway. The present Review specifically highlights these variations and their implications. There is growing evidence to suggest that several phenotypes are common to GPI deficiency and should be expected in GPI biosynthetic mutants. However, it appears that several phenotypes are unique to a specific step in the pathway and may even be species-specific. These could suggest the points at which the GPI biosynthetic pathway intersects with other important cellular pathways and could be points of regulation. They could be of particular significance in the study of pathogenic fungi and in identification of new and specific antifungal drugs/ drug targets. © 2018 IUBMB Life, 70(5):355-383, 2018.


Asunto(s)
Candida albicans/metabolismo , Proteínas Fúngicas/metabolismo , Glicosilfosfatidilinositoles/biosíntesis , Proteínas Ligadas a Lípidos/metabolismo , Saccharomyces cerevisiae/metabolismo , Antifúngicos/farmacología , Candida albicans/efectos de los fármacos , Candida albicans/genética , Secuencia de Carbohidratos , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Regulación Fúngica de la Expresión Génica , Glicosilfosfatidilinositoles/química , Glicosilfosfatidilinositoles/deficiencia , Glicosilfosfatidilinositoles/genética , Glicosilfosfatidilinositoles/metabolismo , Humanos , Proteínas Ligadas a Lípidos/química , Proteínas Ligadas a Lípidos/genética , Enfermedades Metabólicas/genética , Enfermedades Metabólicas/metabolismo , Enfermedades Metabólicas/patología , Mutación , Fenotipo , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/genética , Convulsiones/genética , Convulsiones/metabolismo , Convulsiones/patología , Transducción de Señal , Especificidad de la Especie
7.
FEMS Yeast Res ; 18(7)2018 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-29945236

RESUMEN

Candida albicans N-acetylglucosaminylphosphatidylinositol de-N-acetylase (CaGpi12) recognises N-acetylglucosaminylphosphatidylinositol (GlcNAc-PI) from Saccharomyces cerevisiae and is able to complement ScGPI12 function. Both N- and C-terminal ends of CaGpi12 are important for its function. CaGpi12 was biochemically characterised using rough endoplasmic reticulum microsomes prepared from BWP17 strain of C. albicans. CaGpi12 is optimally active at 30°C and pH 7.5. It is a metal-dependent enzyme that is stimulated by divalent cations but shows no preference for Zn2+ unlike the mammalian homologue. It irreversibly loses activity upon incubation with a metal chelator. Two conserved motifs, HPDDE and HXXH, are both important for its function in the cell. CaGPI12 is essential for growth and viability of C. albicans. Its loss causes reduction of GlcNAc-PI de-N-acetylase activity, cell wall defects and filamentation defects. The filamentation defects could be specifically correlated to an upregulation of the HOG1 pathway.


Asunto(s)
Acetilesterasa/metabolismo , Acetilglucosamina/análogos & derivados , Candida albicans/enzimología , Proteínas Fúngicas/metabolismo , Fosfatidilinositoles/biosíntesis , Acetilesterasa/química , Acetilesterasa/genética , Acetilglucosamina/biosíntesis , Secuencias de Aminoácidos , Candida albicans/genética , Candida albicans/crecimiento & desarrollo , Candida albicans/metabolismo , Catálisis , Pared Celular/metabolismo , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Prueba de Complementación Genética , Concentración de Iones de Hidrógeno , Hifa/enzimología , Hifa/genética , Hifa/crecimiento & desarrollo , Hifa/metabolismo , Metales/química , Viabilidad Microbiana , Microsomas/metabolismo , Mutación , Saccharomyces cerevisiae/genética , Temperatura
8.
Yeast ; 33(8): 365-83, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27337589

RESUMEN

CaGpi14 is the catalytic subunit of the first mannosyltransferase that is involved in the glycosylphosphatidylinositol (GPI) biosynthetic pathway in Candida albicans. We show that CaGPI14 is able to rescue a conditionally lethal gpi14 mutant of Saccharomyces cerevisiae, unlike its mammalian homologue. The depletion of this enzyme in C. albicans leads to severe growth defects, besides causing deficiencies in GPI anchor levels. In addition, CaGpi14 depletion results in cell wall defects and upregulation of the cell wall integrity response pathway. This in turn appears to trigger the osmotic-stress dependent activation of the HOG1 pathway and an upregulation of HOG1 as well as its downstream target, SKO1, a known suppressor of expression of hyphae-specific genes. Consistent with this, mutants of CaGPI14 are unable to undergo hyphal transformations in different hyphae-inducing media, under conditions that produce abundant hyphae in the wild-type cells. Hyphal defects in the CaGPI14 mutants could not be attributed either to reduced protein kinase C activation or to defective Ras signalling in these cells but appeared to be driven by perturbations in the HOG1 pathway. Copyright © 2016 John Wiley & Sons, Ltd.


Asunto(s)
Candida albicans/crecimiento & desarrollo , Dominio Catalítico , Pared Celular/metabolismo , Glicosilfosfatidilinositoles/biosíntesis , Hifa/crecimiento & desarrollo , Manosiltransferasas/metabolismo , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Candida albicans/enzimología , Candida albicans/genética , Genes Letales , Hifa/enzimología , Hifa/genética , Manosiltransferasas/química , Manosiltransferasas/genética , Proteínas Quinasas Activadas por Mitógenos/genética , Morfogénesis , Mutación , Presión Osmótica , Proteína Quinasa C/metabolismo , Proteínas Represoras/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Espectrometría de Masa por Ionización de Electrospray
9.
J Biol Chem ; 289(6): 3365-82, 2014 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-24356967

RESUMEN

Candida albicans is a leading cause of fungal infections worldwide. It has several glycosylphosphatidylinositol (GPI)-anchored virulence factors. Inhibiting GPI biosynthesis attenuates its virulence. Building on our previous work, we explore the interaction of GPI biosynthesis in C. albicans with ergosterol biosynthesis and hyphal morphogenesis. This study is also the first report of transcriptional co-regulation existing between two subunits of the multisubunit enzyme complex, GPI-N-acetylglucosaminyltransferase (GPI-GnT), involved in the first step of GPI anchor biosynthesis in eukaryotes. Using mutational analysis, we show that the accessory subunits, GPI2 and GPI19, of GPI-GnT exhibit opposite effects on ergosterol biosynthesis and Ras signaling (which determines hyphal morphogenesis). This is because the two subunits negatively regulate one another; GPI19 mutants show up-regulation of GPI2, whereas GPI2 mutants show up-regulation of GPI19. Two different models were examined as follows. First, the two GPI-GnT subunits independently interact with ergosterol biosynthesis and Ras signaling. Second, the two subunits mutually regulate one another and thereby regulate sterol levels and Ras signaling. Analysis of double mutants of these subunits indicates that GPI19 controls ergosterol biosynthesis through ERG11 levels, whereas GPI2 determines the filamentation by cross-talk with Ras1 signaling. Taken together, this suggests that the first step of GPI biosynthesis talks to and regulates two very important pathways in C. albicans. This could have implications for designing new antifungal strategies.


Asunto(s)
Candida albicans/metabolismo , Ergosterol/biosíntesis , Proteínas Fúngicas/metabolismo , Glicosilfosfatidilinositoles/biosíntesis , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Transducción de Señal/fisiología , Candida albicans/genética , Sistema Enzimático del Citocromo P-450/genética , Sistema Enzimático del Citocromo P-450/metabolismo , Ergosterol/genética , Proteínas Fúngicas/genética , Glucosiltransferasas/genética , Glucosiltransferasas/metabolismo , Glicosilfosfatidilinositoles/genética , Mutación , Proteínas Proto-Oncogénicas p21(ras)/genética
10.
J Biol Chem ; 288(11): 7590-7595, 2013 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-23341455

RESUMEN

We showed previously that Entamoeba histolytica PIG-L exhibits a novel metal-independent albeit metal-stimulated activity. Using mutational and biochemical analysis, here we identify Asp-46 and His-140 of the enzyme as being important for catalysis. We show that these mutations neither affect the global conformational of the enzyme nor alter its metal binding affinity. The defect in catalysis, due to the mutations, is specifically due to an effect on V(max) and not due to altered substrate affinity (or K(m)). We propose a general acid-base pair mechanism to explain our results.


Asunto(s)
Amidohidrolasas/química , Entamoeba histolytica/metabolismo , Regulación Enzimológica de la Expresión Génica , Amidohidrolasas/fisiología , Catálisis , Dicroismo Circular , Escherichia coli/metabolismo , Glicómica/métodos , Concentración de Iones de Hidrógeno , Cinética , Metales/química , Modelos Biológicos , Modelos Químicos , Mutagénesis Sitio-Dirigida , Mutación , Conformación Proteica , Estructura Terciaria de Proteína
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA