Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Nat Immunol ; 24(12): 2121-2134, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37945821

RESUMEN

The T cell antigen receptor (TCR) contains ten immunoreceptor tyrosine-based activation motif (ITAM) signaling sequences distributed within six CD3 subunits; however, the reason for such structural complexity and multiplicity is unclear. Here we evaluated the effect of inactivating the three CD3ζ chain ITAMs on TCR signaling and T cell effector responses using a conditional 'switch' mouse model. Unexpectedly, we found that T cells expressing TCRs containing inactivated (non-signaling) CD3ζ ITAMs (6F-CD3ζ) exhibited reduced ability to discriminate between low- and high-affinity ligands, resulting in enhanced signaling and cytokine responses to low-affinity ligands because of a previously undetected inhibitory function of CD3ζ ITAMs. Also, 6F-CD3ζ TCRs were refractory to antagonism, as predicted by a new in silico adaptive kinetic proofreading model that revises the role of ITAM multiplicity in TCR signaling. Finally, T cells expressing 6F-CD3ζ displayed enhanced cytolytic activity against solid tumors expressing low-affinity ligands, identifying a new counterintuitive approach to TCR-mediated cancer immunotherapy.


Asunto(s)
Motivo de Activación del Inmunorreceptor Basado en Tirosina , Receptores de Antígenos de Linfocitos T , Animales , Ratones , Complejo CD3 , Ligandos , Péptidos , Linfocitos T
2.
Nat Immunol ; 24(9): 1434-1442, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37500886

RESUMEN

Cytotoxic T lymphocytes (CTLs) fight intracellular pathogens and cancer by identifying and destroying infected or transformed target cells1. To kill, CTLs form a specialized cytotoxic immune synapse (IS) with a target of interest and then release toxic perforin and granzymes into the interface to elicit programmed cell death2-5. The IS then dissolves, enabling CTLs to search for additional prey and professional phagocytes to clear the corpse6. While the mechanisms governing IS assembly have been studied extensively, far less is known about target cell release. Here, we applied time-lapse imaging to explore the basis for IS dissolution and found that it occurred concomitantly with the cytoskeletal contraction of apoptotic targets. Genetic and pharmacological perturbation of this contraction response indicated that it was both necessary and sufficient for CTL dissociation. We also found that mechanical amplification of apoptotic contractility promoted faster CTL detachment and serial killing. Collectively, these results establish a biophysical basis for IS dissolution and highlight the importance of mechanosensory feedback in the regulation of cell-cell interactions.


Asunto(s)
Apoptosis , Linfocitos T Citotóxicos , Apoptosis/genética , Perforina , Granzimas
4.
Blood ; 141(20): 2520-2536, 2023 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-36735910

RESUMEN

Metabolic programs contribute to hematopoietic stem and progenitor cell (HSPC) fate, but it is not known whether the metabolic regulation of protein synthesis controls HSPC differentiation. Here, we show that SLC7A1/cationic amino acid transporter 1-dependent arginine uptake and its catabolism to the polyamine spermidine control human erythroid specification of HSPCs via the activation of the eukaryotic translation initiation factor 5A (eIF5A). eIF5A activity is dependent on its hypusination, a posttranslational modification resulting from the conjugation of the aminobutyl moiety of spermidine to lysine. Notably, attenuation of hypusine synthesis in erythroid progenitors, by the inhibition of deoxyhypusine synthase, abrogates erythropoiesis but not myeloid cell differentiation. Proteomic profiling reveals mitochondrial translation to be a critical target of hypusinated eIF5A, and accordingly, progenitors with decreased hypusine activity exhibit diminished oxidative phosphorylation. This affected pathway is critical for eIF5A-regulated erythropoiesis, as interventions augmenting mitochondrial function partially rescue human erythropoiesis under conditions of attenuated hypusination. Levels of mitochondrial ribosomal proteins (RPs) were especially sensitive to the loss of hypusine, and we find that the ineffective erythropoiesis linked to haploinsufficiency of RPS14 in chromosome 5q deletions in myelodysplastic syndrome is associated with a diminished pool of hypusinated eIF5A. Moreover, patients with RPL11-haploinsufficient Diamond-Blackfan anemia as well as CD34+ progenitors with downregulated RPL11 exhibit a markedly decreased hypusination in erythroid progenitors, concomitant with a loss of mitochondrial metabolism. Thus, eIF5A-dependent protein synthesis regulates human erythropoiesis, and our data reveal a novel role for RPs in controlling eIF5A hypusination in HSPCs, synchronizing mitochondrial metabolism with erythroid differentiation.


Asunto(s)
Proteómica , Espermidina , Humanos , Espermidina/metabolismo , Factores de Iniciación de Péptidos/genética , Diferenciación Celular , Factor 5A Eucariótico de Iniciación de Traducción
5.
Nature ; 565(7738): 246-250, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30602786

RESUMEN

In addition to maintaining immune tolerance, FOXP3+ regulatory T (Treg) cells perform specialized functions in tissue homeostasis and remodelling1,2. However, the characteristics and functions of brain Treg cells are not well understood because there is a low number of Treg cells in the brain under normal conditions. Here we show that there is massive accumulation of Treg cells in the mouse brain after ischaemic stroke, and this potentiates neurological recovery during the chronic phase of ischaemic brain injury. Although brain Treg cells are similar to Treg cells in other tissues such as visceral adipose tissue and muscle3-5, they are apparently distinct and express unique genes related to the nervous system including Htr7, which encodes the serotonin receptor 5-HT7. The amplification of brain Treg cells is dependent on interleukin (IL)-2, IL-33, serotonin and T cell receptor recognition, and infiltration into the brain is driven by the chemokines CCL1 and CCL20. Brain Treg cells suppress neurotoxic astrogliosis by producing amphiregulin, a low-affinity epidermal growth factor receptor (EGFR) ligand. Stroke is a leading cause of neurological disability, and there are currently few effective recovery methods other than rehabilitation during the chronic phase. Our findings suggest that Treg cells and their products may provide therapeutic opportunities for neuronal protection against stroke and neuroinflammatory diseases.


Asunto(s)
Astrocitos/patología , Isquemia Encefálica/inmunología , Isquemia Encefálica/patología , Gliosis/patología , Neuroprotección/inmunología , Linfocitos T Reguladores/citología , Linfocitos T Reguladores/inmunología , Animales , Encéfalo/citología , Encéfalo/inmunología , Movimiento Celular , Proliferación Celular , Quimiocina CCL1/inmunología , Quimiocina CCL20/inmunología , Interleucina-2/inmunología , Interleucina-33/inmunología , Interleucina-6/inmunología , Masculino , Ratones , Ratones Endogámicos C57BL , Receptores de Antígenos de Linfocitos T/inmunología , Receptores CCR/metabolismo , Receptores de Serotonina/genética , Receptores de Serotonina/metabolismo , Factor de Transcripción STAT3/metabolismo , Serotonina/metabolismo , Transducción de Señal , Linfocitos T Reguladores/metabolismo
6.
Cancer Sci ; 109(7): 2130-2140, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-29790621

RESUMEN

Adoptive T-cell therapy is an effective strategy for cancer immunotherapy. However, infused T cells frequently become functionally exhausted, and consequently offer a poor prognosis after transplantation into patients. Adoptive transfer of tumor antigen-specific stem cell memory T (TSCM ) cells is expected to overcome this shortcoming as TSCM cells are close to naïve T cells, but are also highly proliferative, long-lived, and produce a large number of effector T cells in response to antigen stimulation. We previously reported that activated effector T cells can be converted into TSCM -like cells (iTSCM ) by coculturing with OP9 cells expressing Notch ligand, Delta-like 1 (OP9-hDLL1). Here we show the methodological parameters of human CD8+ iTSCM cell generation and their application to adoptive cancer immunotherapy. Regardless of the stimulation by anti-CD3/CD28 antibodies or by antigen-presenting cells, human iTSCM cells were more efficiently induced from central memory type T cells than from effector memory T cells. During the induction phase by coculture with OP9-hDLL1 cells, interleukin (IL)-7 and IL-15 (but not IL-2 or IL-21) could efficiently generate iTSCM cells. Epstein-Barr virus-specific iTSCM cells showed much stronger antitumor potentials than conventionally activated T cells in humanized Epstein-Barr virus transformed-tumor model mice. Thus, adoptive T-cell therapy with iTSCM offers a promising therapeutic strategy for cancer immunotherapy.


Asunto(s)
Inmunoterapia Adoptiva/métodos , Neoplasias , Células Madre/inmunología , Subgrupos de Linfocitos T/inmunología , Linfocitos T/inmunología , Animales , Línea Celular , Humanos , Memoria Inmunológica , Activación de Linfocitos/inmunología , Ratones , Neoplasias/inmunología
7.
Int Immunol ; 29(10): 457-469, 2017 12 18.
Artículo en Inglés | MEDLINE | ID: mdl-29126272

RESUMEN

Antigen-specific regulatory T cells (Tregs) possess the potential to reduce excess immune responses in autoimmune diseases, allergy, rejection after organ transplantation and graft-versus-host disease (GVHD) following hematopoietic stem cell transplantation. Although in vitro-expanded antigen-specific induced Tregs (iTregs) have been considered to be a promising therapeutic agent against such excessive immune reactions, the instability of iTregs after transfer is a fundamental problem in their clinical application. In this study, we searched for the optimal way to generate stable iTregs for the prevention of the murine GVHD model, in which conventional iTregs are reported to be inefficient. Allo-antigen-specific iTregs were generated by co-culturing naive T cells with allogenic dendritic cells in the presence of TGF-ß and retinoic acid. By examining various agents and genes, we found that vitamin C stabilized Foxp3 expression most effectively in adoptively transferred iTregs under a GVHD environment. Vitamin C treatment caused active DNA demethylation specifically on the conserved non-coding sequence 2 (CNS2) enhancer of the Foxp3 gene locus in allo-antigen-specific iTregs and reduced iTreg conversion into pathogenic exFoxp3 cells. Vitamin C-treated iTregs suppressed GVHD symptoms more efficiently than untreated iTregs. Vitamin C also facilitated induction of a FOXP3high iTreg population from human naive T cells, which was very stable even in the presence of IL-6 in vitro. The treatment of vitamin C for iTreg promises innovative clinical application for adoptive Treg immunotherapy.


Asunto(s)
Ácido Ascórbico/farmacología , Modelos Animales de Enfermedad , Enfermedad Injerto contra Huésped/prevención & control , Isoantígenos/inmunología , Linfocitos T Reguladores/efectos de los fármacos , Animales , Enfermedad Injerto contra Huésped/inmunología , Enfermedad Injerto contra Huésped/terapia , Humanos , Inmunoterapia Adoptiva , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Linfocitos T Reguladores/inmunología , Tretinoina/farmacología
8.
Int Immunol ; 29(8): 365-375, 2017 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-29048538

RESUMEN

Since induced regulatory T cells (iTregs) can be produced in a large quantity in vitro, these cells are expected to be clinically useful to induce immunological tolerance in various immunological diseases. Foxp3 (Forkhead box P3) expression in iTregs is, however, unstable due to the lack of demethylation of the CpG island in the conserved non-coding sequence 2 (CNS2) of the Foxp3 locus. To facilitate the demethylation of CNS2, we over-expressed the catalytic domain (CD) of the ten-eleven translocation (TET) protein, which catalyzes the steps of the iterative demethylation of 5-methylcytosine. TET-CD over-expression in iTregs resulted in partial demethylation of CNS2 and stable Foxp3 expression. We also discovered that TET expression was enhanced under low oxygen (5%) culture conditions, which facilitated CNS2 DNA demethylation and stabilization of Foxp3 expression in a TET2- and TET3-dependent manner. In combination with vitamin C treatment, which has been reported to enhance TET catalytic activity, iTregs generated under low oxygen conditions retained more stable Foxp3 expression in vitro and in vivo and exhibited stronger suppression activity in a colitis model compared with untreated iTregs. Our data indicate that the induction and activation of TET enzymes in iTregs would be an effective method for Treg-mediated adoptive immunotherapy.


Asunto(s)
Colitis/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Factores de Transcripción Forkhead/metabolismo , Inmunoterapia Adoptiva/métodos , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas/metabolismo , Subgrupos de Linfocitos T/inmunología , Linfocitos T Reguladores/inmunología , Animales , Ácido Ascórbico/administración & dosificación , Colitis/inducido químicamente , Secuencia Conservada , Islas de CpG/genética , Desmetilación , Dioxigenasas , Inducción Enzimática , Factores de Transcripción Forkhead/genética , Regulación de la Expresión Génica , Humanos , Hipoxia , Ratones , Subgrupos de Linfocitos T/trasplante , Linfocitos T Reguladores/trasplante
9.
Virus Genes ; 51(1): 136-9, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25956292

RESUMEN

Bats are natural hosts of many zoonotic viruses. Monitoring bat viruses is important to detect novel bat-borne infectious diseases. In this study, next generation sequencing techniques and conventional PCR were used to analyze intestine, lung, and blood clot samples collected from wild bats captured at three locations in Davao region, in the Philippines in 2012. Different viral genes belonging to the Retroviridae and Herpesviridae families were identified using next generation sequencing. The existence of herpesvirus in the samples was confirmed by PCR using herpesvirus consensus primers. The nucleotide sequences of the resulting PCR amplicons were 166-bp. Further phylogenetic analysis identified that the virus from which this nucleotide sequence was obtained belonged to the Gammaherpesvirinae subfamily. PCR using primers specific to the nucleotide sequence obtained revealed that the infection rate among the captured bats was 30 %. In this study, we present the partial genome of a novel gammaherpesvirus detected from wild bats. Our observations also indicate that this herpesvirus may be widely distributed in bat populations in Davao region.


Asunto(s)
Quirópteros/virología , ADN Viral/química , ADN Viral/genética , Gammaherpesvirinae/clasificación , Gammaherpesvirinae/aislamiento & purificación , Infecciones por Herpesviridae/veterinaria , Animales , Análisis por Conglomerados , Gammaherpesvirinae/genética , Infecciones por Herpesviridae/virología , Datos de Secuencia Molecular , Filipinas , Filogenia , Reacción en Cadena de la Polimerasa , Análisis de Secuencia de ADN , Homología de Secuencia
10.
Mol Oncol ; 18(7): 1695-1718, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38922759

RESUMEN

Tumor-infiltrating lymphocytes (TILs) and chimeric antigen receptor (CAR) T cells have demonstrated remarkable success in the treatment of relapsed/refractory melanoma and hematological malignancies, respectively. These treatments have marked a pivotal shift in cancer management. However, as "living drugs," their effectiveness is dependent on their ability to proliferate and persist in patients. Recent studies indicate that the mechanisms regulating these crucial functions, as well as the T cell's differentiation state, are conditioned by metabolic shifts and the distinct utilization of metabolic pathways. These metabolic shifts, conditioned by nutrient availability as well as cell surface expression of metabolite transporters, are coupled to signaling pathways and the epigenetic landscape of the cell, modulating transcriptional, translational, and post-translational profiles. In this review, we discuss the processes underlying the metabolic remodeling of activated T cells, the impact of a tumor metabolic environment on T cell function, and potential metabolic-based strategies to enhance T cell immunotherapy.


Asunto(s)
Receptores Quiméricos de Antígenos , Microambiente Tumoral , Humanos , Microambiente Tumoral/inmunología , Receptores Quiméricos de Antígenos/metabolismo , Receptores Quiméricos de Antígenos/inmunología , Animales , Linfocitos T/inmunología , Linfocitos T/metabolismo , Neoplasias/inmunología , Neoplasias/terapia , Neoplasias/metabolismo , Neoplasias/patología , Inmunoterapia Adoptiva/métodos
11.
Sci Signal ; 17(846): eadp8569, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39042728

RESUMEN

Chimeric antigen receptor (CAR) T cells have been used to successfully treat various blood cancers, but adverse effects have limited their potential. Here, we developed chimeric adaptor proteins (CAPs) and CAR tyrosine kinases (CAR-TKs) in which the intracellular ζ T cell receptor (TCRζ) chain was replaced with intracellular protein domains to stimulate signaling downstream of the TCRζ chain. CAPs contain adaptor domains and the kinase domain of ZAP70, whereas CAR-TKs contain only ZAP70 domains. We hypothesized that CAPs and CAR-TKs would be more potent than CARs because they would bypass both the steps that define the signaling threshold of TCRζ and the inhibitory regulation of upstream molecules. CAPs were too potent and exhibited high tonic signaling in vitro. In contrast, CAR-TKs exhibited high antitumor efficacy and significantly enhanced long-term tumor clearance in leukemia-bearing NSG mice as compared with the conventional CD19-28ζ-CAR-T cells. CAR-TKs were activated in a manner independent of the kinase Lck and displayed slower phosphorylation kinetics and prolonged signaling compared with the 28ζ-CAR. Lck inhibition attenuated CAR-TK cell exhaustion and improved long-term function. The distinct signaling properties of CAR-TKs may therefore be harnessed to improve the in vivo efficacy of T cells engineered to express an antitumor chimeric receptor.


Asunto(s)
Receptores de Antígenos de Linfocitos T , Receptores Quiméricos de Antígenos , Transducción de Señal , Linfocitos T , Animales , Receptores Quiméricos de Antígenos/inmunología , Receptores Quiméricos de Antígenos/metabolismo , Receptores Quiméricos de Antígenos/genética , Humanos , Transducción de Señal/inmunología , Ratones , Receptores de Antígenos de Linfocitos T/inmunología , Receptores de Antígenos de Linfocitos T/metabolismo , Receptores de Antígenos de Linfocitos T/genética , Linfocitos T/inmunología , Linfocitos T/metabolismo , Proteína Tirosina Quinasa ZAP-70/metabolismo , Proteína Tirosina Quinasa ZAP-70/genética , Proteína Tirosina Quinasa ZAP-70/inmunología , Inmunoterapia Adoptiva/métodos , Ratones Endogámicos NOD , Línea Celular Tumoral , Fosforilación
12.
Biochem Biophys Res Commun ; 435(3): 378-84, 2013 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-23665028

RESUMEN

Th17 cells, which have been implicated in autoimmune diseases, require IL-6 and TGF-ß for early differentiation. Several Smad-independent pathways including the JNK and the RhoA-ROCK pathways have been implicated in the induction of RORγt, the master regulator of Th17, however, molecular mechanisms underlying Smad-independent pathway remain largely unknown. To identify novel pathways involved in Th17 differentiation, we screened 285 chemical inhibitors for known signaling pathways. Among them, we found that Kenpaullone, a GSK3-ß and CDK inhibitor, efficiently suppressed TGF-ß-mediated RORγt induction and enhanced Foxp3 induction in primary T cells. Another CDK inhibitor, Roscovitine, but not other GSK3-ß inhibitors, suppressed Th17 differentiation and enhanced iTreg development. Kenpaullone and Roscovitine suppressed experimental autoimmune encephalomyelitis (EAE), a typical Th17-mediated autoimmune disease model. These two compounds enhanced STAT5 phosphorylation and restored IL-2 production in the presence of TGF-ß. These data suggest that CDK inhibitors modulate TGF-ß-signaling pathways, which restore TGF-ß-mediated suppression of IL-2 production, thereby modifying the Th17/iTreg balance.


Asunto(s)
Benzazepinas/farmacología , Diferenciación Celular/inmunología , Quinasas Ciclina-Dependientes/antagonistas & inhibidores , Encefalomielitis Autoinmune Experimental/tratamiento farmacológico , Indoles/farmacología , Inhibidores de Proteínas Quinasas/farmacología , Linfocitos T Reguladores/inmunología , Células Th17/inmunología , Animales , Diferenciación Celular/efectos de los fármacos , Encefalomielitis Autoinmune Experimental/inmunología , Encefalomielitis Autoinmune Experimental/patología , Ratones , Ratones Endogámicos C57BL , Linfocitos T Reguladores/metabolismo , Linfocitos T Reguladores/patología , Células Th17/efectos de los fármacos , Células Th17/metabolismo
13.
Nihon Rinsho ; 71(7): 1291-301, 2013 Jul.
Artículo en Japonés | MEDLINE | ID: mdl-23961683

RESUMEN

Stroke or brain ischemia is one of the major causes of death and disability worldwide. Post-ischemic inflammation is an essential step in the progression of brain ischemia-reperfusion injury. In a mouse stroke model, we have reported that IL-23 produced from infiltrating macrophages induces IL-17 producing T cells. IL-17 is mainly produced from gammadeltaT cells and promotes delayed (day 3-4) ischemic brain damage. We also demonstrated that peroxiredoxin (Prx) family proteins released extracellularly from necrotic brain cells induce expression of inflammatory cytokines including IL-23 in macrophages through activation of Toll-like receptor 2(TLR2) and TLR4, thereby promoting neural cell death. We thus propose that regulation of the IL-23-IL-17 axis including gammadeltaT cells, macrophages, and extracellular Prxs could be a potent neuroprotective tool.


Asunto(s)
Isquemia Encefálica/terapia , Encefalitis/terapia , Inmunidad Innata/inmunología , Animales , Isquemia Encefálica/inmunología , Isquemia Encefálica/metabolismo , Isquemia Encefálica/prevención & control , Modelos Animales de Enfermedad , Encefalitis/complicaciones , Encefalitis/inmunología , Encefalitis/metabolismo , Humanos , Interleucinas/inmunología , Interleucinas/metabolismo
14.
Cancer Cell ; 41(11): 1841-1843, 2023 11 13.
Artículo en Inglés | MEDLINE | ID: mdl-37832553

RESUMEN

Chimeric antigen receptor (CAR) T cell therapies are limited by antigen escape and on-target/off-tumor toxicity. In addressing these challenges, Haubner et al. develop an "IF-BETTER" strategy. Their combinatorial chimeric co-stimulatory receptor with an attenuated CAR enhances acute myeloid leukemia (AML) killing while protecting healthy progenitors, highlighting the potential to leverage cooperative CAR designs.


Asunto(s)
Leucemia Mieloide Aguda , Humanos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/terapia , Inmunoterapia Adoptiva
15.
Physiol Plant ; 146(2): 217-27, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22443421

RESUMEN

To clarify the relationship between cultivar difference in the sensitivity of net photosynthesis to ozone (O(3)) and the reactive oxygen species (ROS) scavenging system in wheat (Triticum aestivum), we investigated the effects of chronic exposure to ambient levels of O(3) on gas exchange rates, activity and concentration of ribulose 1,5-bisphosphate carboxylase/oxygenase (Rubisco), activity of ROS scavenging enzymes and concentration of antioxidants of the flag leaf in two Japanese winter wheat cultivars (Norin 61 and Shirogane-komugi). Although the net photosynthetic rate of the flag leaf in Norin 61 was not significantly reduced by exposure to O(3), that in Shirogane-komugi was significantly reduced by the exposure to O(3) during the anthesis and early grain-filling stages. In the two cultivars, stomatal diffusive conductance to H(2) O of the flag leaf was not significantly affected by the exposure to O(3). The exposure to O(3) induced significant reductions in the activity and concentration of Rubisco, activities of catalase (CAT) and monodehydroascorbate reductase (MDAR) and concentrations of reduced form of ascorbate and total glutathione of the flag leaf in Shirogane-komugi. It was concluded that the sensitivity of net photosynthesis of flag leaf to O(3) is higher in Shirogane-komugi than in Norin 61, and the difference in the sensitivity to O(3) between the two cultivars is mainly due to that in the effects of O(3) on the detoxification ability of ROS, mainly determined by the activity of ROS scavenging enzymes, such as CAT and MDAR.


Asunto(s)
Adaptación Fisiológica , Ozono/metabolismo , Fotosíntesis/fisiología , Hojas de la Planta/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Triticum/genética , Triticum/metabolismo , Antioxidantes/metabolismo , Ácido Ascórbico/metabolismo , Catalasa/metabolismo , Variación Genética , Genotipo , Glutatión/metabolismo , Peróxido de Hidrógeno/metabolismo , Japón , NADH NADPH Oxidorreductasas/metabolismo , Hojas de la Planta/crecimiento & desarrollo , Ribulosa-Bifosfato Carboxilasa/metabolismo , Estrés Fisiológico , Triticum/crecimiento & desarrollo
16.
Science ; 376(6595): 880-884, 2022 05 20.
Artículo en Inglés | MEDLINE | ID: mdl-35587980

RESUMEN

Systems immunology lacks a framework with which to derive theoretical understanding from high-dimensional datasets. We combined a robotic platform with machine learning to experimentally measure and theoretically model CD8+ T cell activation. High-dimensional cytokine dynamics could be compressed onto a low-dimensional latent space in an antigen-specific manner (so-called "antigen encoding"). We used antigen encoding to model and reconstruct patterns of T cell immune activation. The model delineated six classes of antigens eliciting distinct T cell responses. We generalized antigen encoding to multiple immune settings, including drug perturbations and activation of chimeric antigen receptor T cells. Such universal antigen encoding for T cell activation may enable further modeling of immune responses and their rational manipulation to optimize immunotherapies.


Asunto(s)
Antígenos , Linfocitos T CD8-positivos , Citocinas , Activación de Linfocitos , Modelos Inmunológicos , Antígenos/inmunología , Linfocitos T CD8-positivos/inmunología , Humanos , Inmunoterapia , Aprendizaje Automático , Receptores de Antígenos de Linfocitos T/metabolismo
17.
Cancer Res Commun ; 1(1): 41-55, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-36860911

RESUMEN

T cells with a stem cell memory (TSCM) phenotype provide long-term and potent antitumor effects for T-cell transfer therapies. Although various methods for the induction of TSCM-like cells in vitro have been reported, few methods generate TSCM-like cells from effector/exhausted T cells. We have reported that coculture with the Notch ligand-expressing OP9 stromal cells induces TSCM-like (iTSCM) cells. Here, we established a feeder-free culture system to improve iTSCM cell generation from expanded chimeric antigen receptor (CAR)-expressing T cells; culturing CAR T cells in the presence of IL7, CXCL12, IGF-I, and the Notch ligand, hDLL1. Feeder-free CAR-iTSCM cells showed the expression of cell surface markers and genes similar to that of OP9-hDLL1 feeder cell-induced CAR-iTSCM cells, including the elevated expression of SCM-associated genes, TCF7, LEF1, and BCL6, and reduced expression of exhaustion-associated genes like LAG3, TOX, and NR4A1. Feeder-free CAR-iTSCM cells showed higher proliferative capacity depending on oxidative phosphorylation and exhibited higher IL2 production and stronger antitumor activity in vivo than feeder cell-induced CAR-iTSCM cells. Our feeder-free culture system represents a way to rejuvenate effector/exhausted CAR T cells to SCM-like CAR T cells. Significance: Resting CAR T cells with our defined factors reprograms exhausted state to SCM-like state and enables development of improved CAR T-cell therapy.


Asunto(s)
Células Madre , Linfocitos T , Ligandos , Inmunoterapia Adoptiva/métodos , Técnicas de Cocultivo
18.
J Dermatol ; 48(1): 96-100, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-32974964

RESUMEN

A case of xeroderma pigmentosum (XP) group D in a 39-year-old Japanese man is reported. The patient had suffered from moderate to severe solar sensitivity and freckle-like pigmented macules in sun-exposed areas since 6 years of age, and developed skin malignancies such as squamous cell carcinoma, actinic keratosis, Bowen's disease and basal cell carcinoma. The minimal erythema dose for ultraviolet (UV) radiation was decreased with a delayed peak reaction. The level of unscheduled DNA synthesis of fibroblasts from the patient was 70% of normal, while they expressed POLH, a gene product responsible for the XP variant. Whole-exome sequencing indicated that the patient harbored a homozygous mutation of c.1802G>T, p.Arg601Leu in ERCC2. A genetic complementation test was carried out by host cell reactivation assay, which showed that the patient's fibroblasts recovered only when they were transfected with XPD cDNA, confirming the diagnosis of XP-D. Arg601Leu mutation in ERCC2 may be related to mild UV radiation sensitivity and moderate skin lesions.


Asunto(s)
Carcinoma Basocelular , Xerodermia Pigmentosa , Adulto , Reparación del ADN/genética , Humanos , Masculino , Tolerancia a Radiación/genética , Rayos Ultravioleta/efectos adversos , Secuenciación del Exoma , Xerodermia Pigmentosa/diagnóstico , Xerodermia Pigmentosa/genética , Proteína de la Xerodermia Pigmentosa del Grupo D
19.
Methods Mol Biol ; 2111: 127-139, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31933204

RESUMEN

Adoptive T-cell therapy is an attractive strategy for cancer immunotherapy. The transfer of in vitro expanded tumor-associated antigen (TAA)-specific T cells from patients may effectively fight against the original tumor cells. The chimeric antigen receptor-engineered T (CAR-T) cells are also shown to be a promising therapy for hematologic malignancies. However, one of the limitations of these T-cell-based therapies is a rapid acquisition of tolerant (anergy, deletion, dysfunctional and/or exhausted) phenotypes of T cells during activation in vitro and/or after transfer in vivo. We and others found that stem cell memory T (TSCM) cells are strongly resistant against such tolerance, showing strong expansion and persistence in vivo, and provide long-lasting antitumor effects. Here we describe a protocol for the generation of phenotypically TSCM-like cells (iTSCM cells), which can be induced by simple co-culture of activated T cells with OP9 stroma cells expressing a Notch ligand. We also showed the methods of cancer immunotherapy by using NSG mice.


Asunto(s)
Técnicas de Cocultivo/métodos , Células Madre/citología , Linfocitos T/citología , Células Cultivadas , Humanos , Memoria Inmunológica , Técnicas In Vitro , Activación de Linfocitos , Receptores Notch/metabolismo , Células Madre/inmunología , Células del Estroma/citología , Linfocitos T/inmunología
20.
Immunol Med ; 43(1): 1-9, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31822213

RESUMEN

CD8+T cells are important in protective immunity against intracellular pathogens and tumors. In chronic infections or cancer, CD8+T cells are constantly exposed to antigens and inflammatory signals. Such excessive and constitutive signals lead to the deterioration of T cell function, called 'exhaustion'. Exhausted T cells are characterized by low proliferation in response to antigen stimulation, progressive loss of effector function (cytokine production and killing function), expression of multiple inhibitory receptors such as PD-1, Tim3, and LAG3, and metabolic alterations from oxidative phosphorylation to glycolysis. These dysfunctions are associated with altered transcriptional programs and epigenetic regulations and recent studies suggested that NR4a and TOX transcription factors are deeply involved in exhaustion phenotypes. However, an increase the early memory T cells including stem cell memory T (TSCM) cells is critical for T cell persistence and efficient tumor killing especially for adoptive cancer immunotherapy such as CAR-T cell therapy. An increasing amount of evidence supports the therapeutic potential of targeting exhausted T cells and TSCM cells. We have begun to understand the molecular mechanisms of T cell exhaustion and early memory formation, and the clinical application of converting exhausted T cells to rejuvenated early memory T cells is the goal of our study.


Asunto(s)
Memoria Inmunológica/inmunología , Neoplasias/inmunología , Linfocitos T/inmunología , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA