Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Int J Radiat Biol ; 94(8): 769-781, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29157078

RESUMEN

PURPOSE: In the late 1990s, it had become clear that the long-standing paradigm for the action of radiation on living cells and organisms did not have sufficient power to explain the observed effects of low dose ionizing radiation. The purpose of this commentary is to examine the experiments that lead up to the modification of the classic paradigm consequent on these observations, their historical precedents, and the development of our understanding of the role of epigenetics in low dose radiation effects. RESULTS AND CONCLUSIONS: We discuss how parallel advances in epigenetics from developmental biology and cancer studies, and the discovery of epigenetic modifications of chromatin, such as DNA methylation, impacted on the development of an epigenetic paradigm for low dose effects. We also assess the impact of technology development in supporting the paradigm shift. We then examine recent accumulated data on epigenetic modification in response to irradiation since that shift took place, and identify areas where bringing together data from developmental biology and cancer might answer some of the paradoxes and contradictions in this data. We predict that further paradigm shifts are imminent.


Asunto(s)
Epigénesis Genética/efectos de la radiación , Animales , Metilación de ADN/efectos de la radiación , Relación Dosis-Respuesta a Droga , Inestabilidad Genómica/efectos de la radiación , Humanos , Exposición a la Radiación/efectos adversos
2.
Environ Epigenet ; 3(4): dvx014, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-29492317

RESUMEN

The exposure to adverse environmental conditions (e.g. poor nutrition) may lead to increased disease risk in an individual and their descendants. In some cases, the results may be sexually dimorphic. A range of phenotypes has been associated with deficiency in or defective metabolism of the vitamin folate. However, the molecular mechanism linking folate metabolism to development is still not well defined nor is it clear whether phenotypes are sex-specific. The enzyme methionine synthase reductase (MTRR) is required for the progression of folate metabolism and the utilization of methyl groups from the folate cycle. Previously, we showed that the hypomorphic Mtrrgt mutation in mice results in metabolic disruption, epigenetic instability, and a wide spectrum of developmental phenotypes (e.g. growth defects, congenital malformations) at midgestation that appear in subsequent wild-type generations. This transgenerational effect only occurs through the maternal lineage. Here, we explore whether the phenotypes that result from either intrinsic or ancestral Mtrr deficiency are sexually dimorphic. We found that no sexual dimorphism is apparent in either situation when the phenotypes were broadly or specifically defined. However, when we focused on the group of phenotypically normal conceptuses derived from maternal grandparental Mtrr deficiency, we observed an apparent increase in placental efficiency in each subsequent generation leading to F4 generation female embryos that weigh more than controls. These data suggest that ancestral abnormal folate metabolism may lead to male grandprogeny that are less able to adapt or female grandprogeny that are programmed to become more sensitive to folate availability in subsequent generations.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA