Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
J Biol Chem ; 299(9): 105130, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37543366

RESUMEN

Long noncoding RNAs (lncRNAs) are increasingly being recognized as modulators in various biological processes. However, due to their low expression, their systematic characterization is difficult to determine. Here, we performed transcript annotation by a newly developed computational pipeline, termed RNA-seq and small RNA-seq combined strategy (RSCS), in a wide variety of cellular contexts. Thousands of high-confidence potential novel transcripts were identified by the RSCS, and the reliability of the transcriptome was verified by analysis of transcript structure, base composition, and sequence complexity. Evidenced by the length comparison, the frequency of the core promoter and the polyadenylation signal motifs, and the locations of transcription start and end sites, the transcripts appear to be full length. Furthermore, taking advantage of our strategy, we identified a large number of endogenous retrovirus-associated lncRNAs, and a novel endogenous retrovirus-lncRNA that was functionally involved in control of Yap1 expression and essential for early embryogenesis was identified. In summary, the RSCS can generate a more complete and precise transcriptome, and our findings greatly expanded the transcriptome annotation for the mammalian community.


Asunto(s)
Anotación de Secuencia Molecular , ARN Largo no Codificante , RNA-Seq , Animales , Desarrollo Embrionario/genética , Mamíferos/embriología , Mamíferos/genética , Anotación de Secuencia Molecular/métodos , Regiones Promotoras Genéticas/genética , Reproducibilidad de los Resultados , Retroviridae/genética , ARN Largo no Codificante/genética , RNA-Seq/métodos , Sitio de Iniciación de la Transcripción , Transcriptoma/genética , Proteínas Señalizadoras YAP/genética , Proteínas Señalizadoras YAP/metabolismo
2.
Mol Biol Rep ; 51(1): 560, 2024 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-38643284

RESUMEN

BACKGROUND: Zygotic genome activation (ZGA) is an important event in the early embryo development, and human embryo developmental arrest has been highly correlated with ZGA failure in clinical studies. Although a few studies have linked maternal factors to mammalian ZGA, more studies are needed to fully elucidate the maternal factors that are involved in ZGA. METHODS AND RESULTS: In this study, we utilized published single-cell RNA sequencing data from a Dux-mediated mouse embryonic stem cell to induce a 2-cell-like transition state and selected potential drivers for the transition according to an RNA velocity analysis. CONCLUSIONS: An overlap of potential candidate markers of 2-cell-like-cells identified in this research with markers generated by various data sets suggests that Trim75 is a potential driver of minor ZGA and may recruit EP300 and establish H3K27ac in the gene body of minor ZGA genes, thereby contributing to mammalian preimplantation embryo development.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Cigoto , Animales , Humanos , Ratones , Embrión de Mamíferos , Desarrollo Embrionario/genética , Genoma/genética , Cigoto/metabolismo
3.
Stem Cells ; 40(8): 751-762, 2022 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-35583192

RESUMEN

Pluripotent stem cells (PSCs) have unlimited self-renewal and multifunctional development potential in vitro. Porcine PSCs are highly desirable due to the conserved characteristics between pigs and humans. Extended PSCs (EPSCs) are additionally capable of differentiating into embryonic (Em) and extraembryonic (E×Em) parts. Here, we employed the LCDM culture system (consisting of human LIF, CHIR99021, (S)-(+)-dimethindene maleate, and minocycline hydrochloride), which can establish EPSCs from humans and mice, to derive and maintain stable porcine PSCs (pLCDM) from in vivo blastocysts. Transcriptome analysis revealed the unique molecular characteristics of pLCDMs compared with early-stage embryos. Meanwhile, the parallels and differences in the transcriptome features among pLCDMs, human EPSCs, and mouse EPSCs were carefully analyzed and evaluated. Most noteworthy, the trophoblast lineage differentiation tendency of pLCDMs was clarified by inducing trophoblast-like cells and trophoblast stem cells (TSCs) in vitro. Further research found that 2 of the small molecules in LCDM culture system, (S)-(+)-dimethindene maleate (DiM) and minocycline hydrochloride (MiH), probably play a crucial role in promoting trophoblast lineage differentiation potential of pLCDMs.


Asunto(s)
Minociclina , Células Madre Pluripotentes , Animales , Diferenciación Celular , Dimetindeno , Humanos , Ratones , Porcinos , Trofoblastos
4.
FASEB J ; 34(1): 691-705, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31914626

RESUMEN

The inner cell mass (ICM) in blastocyst is the origin of all somatic and germ cells in mammals and pluripotent stem cells (PSCs) in vitro. As the conserved principles between pig and human, here we performed comprehensive single-cell RNA-seq for porcine early embryos from oocyte to early blastocyst (EB). We show the specification of the ICM and trophectoderm in morula and the molecular signature of the precursors. We demonstrate the existence of naïve pluripotency signature in morula and ICM of EB, and the specific pluripotent genes and the activity of signalling pathways highlight the characteristics of the naïve pluripotency. We observe the absence of dosage compensation with respect to X-chromosome (XC) in morula, and incomplete dosage compensation in the EB. However, the dynamics of dosage compensation may be independent of the expression of XIST induced XC inactivation. Our study describes molecular landmarks of embryogenesis in pig that will provide a better strategy for derivation of porcine PSCs and improve research in regenerative medicine.


Asunto(s)
Blastocisto/citología , Linaje de la Célula , Regulación del Desarrollo de la Expresión Génica/genética , Estratos Germinativos/citología , Oocitos/citología , Animales , Perfilación de la Expresión Génica/métodos , Células Germinativas/citología , Células Madre Pluripotentes/citología , Porcinos , Inactivación del Cromosoma X/fisiología
5.
J Biol Chem ; 294(47): 17863-17874, 2019 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-31624145

RESUMEN

Long noncoding RNAs (lncRNAs) modulate gene expression as competing endogenous RNAs (ceRNAs) that sponge regulatory microRNAs (miRNAs). During cellular reprogramming, genes associated with pluripotency establishment need to be up-regulated, and developmental genes need to be silenced. However, how ceRNAs control cellular reprogramming still awaits full elucidation. Here, we used doxycycline-inducible expression of the four transcription factors octamer-binding protein 4 (OCT4), SRY-box 2 (SOX2), Krüppel-like factor 4 (KLF4), and proto-oncogene c-Myc (c-Myc) to generate induced pluripotent stem cells (iPSCs) from mouse embryonic fibroblasts (MEFs). Using RNA-Seq and bioinformatics approaches, we found that the expression levels of miRNAs from MEFs remain high from day 0 to 6 after the doxycycline induction. Many genes targeted by these miRNAs were up-regulated, and long intergenic noncoding RNAs (lincRNAs) and circular RNAs (circRNAs), which have complementary binding sites to these miRNAs, were highly expressed, indicating lincRNAs and circRNAs may function as ceRNAs. Intriguingly, knockdown of the linc/circRNAs that sponge the miRNAs, which target OCT4 down-regulated exogenous OCT4, decreased reprogramming efficiency, and resulted in low-grade iPSCs. Our results suggest that the ceRNA network plays an important role in cellular reprogramming.


Asunto(s)
Reprogramación Celular/genética , Regulación de la Expresión Génica , MicroARNs/metabolismo , Factor 3 de Transcripción de Unión a Octámeros/genética , ARN Largo no Codificante/metabolismo , Animales , Embrión de Mamíferos/citología , Fibroblastos/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Factor 4 Similar a Kruppel , Ratones Endogámicos C57BL , Modelos Biológicos , Factor 3 de Transcripción de Unión a Octámeros/metabolismo , ARN Circular/genética , ARN Circular/metabolismo , ARN Largo no Codificante/genética
6.
J Cell Physiol ; 235(4): 3558-3568, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31595493

RESUMEN

Fusion of differentiated somatic cells with pluripotent stem cells can be used for cellular reprogramming, but the efficiency to obtain hybrid cells is extremely low. Here, we explored a novel cell fusion system, termed single-cell fusion, the efficiency was significantly improved verified by fusion of mouse embryonic stem cells (mESCs), comparing to traditional polyethylene glycol fusion. Then, we employed the optimized system to perform cell fusion of porcine embryonic fibroblasts (PEFs) and porcine pluripotent stem cells (pPSCs) with mESCs. The hybrid cells showed both red and green fluorescence and expressed species-specific genes of mouse and pig to evidence that the fusion was successful. The hybrid cells displayed characteristics similar with mESCs, including colony morphology, alkaline phosphatase positive and formation of embryoid body, and the expressions of core pluripotent factors OCT4, NANOG, and SOX2 of the pig were induced in the mESC/PEF hybrid cells. The results indicate PEFs and pPSCs could be reprogrammed by mESCs via the single-cell fusion. Taking advantage of the hybrid cells to investigate the signaling pathways depended on the pluripotency of pig, we suggest the transforming growth factor-ß signaling pathways may play important roles. In summary, the single-cell fusion is highly efficient, and we believe in the future it will be widely used in the application and fundamental research.


Asunto(s)
Comunicación Celular/genética , Diferenciación Celular/genética , Reprogramación Celular/genética , Células Madre Embrionarias de Ratones/citología , Animales , Fusión Celular/métodos , Línea Celular , Fibroblastos/citología , Células Madre Pluripotentes Inducidas/citología , Ratones , Células Madre Embrionarias de Ratones/metabolismo , Células Madre Pluripotentes/citología , Porcinos
7.
J Biol Chem ; 293(10): 3829-3838, 2018 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-29358330

RESUMEN

Derepression of chromatin-mediated transcriptional repression of paternal and maternal genomes is considered the first major step that initiates zygotic gene expression after fertilization. The histone variant H3.3 is present in both male and female gametes and is thought to be important for remodeling the paternal and maternal genomes for activation during both fertilization and embryogenesis. However, the underlying mechanisms remain poorly understood. Using our H3.3B-HA-tagged mouse model, engineered to report H3.3 expression in live animals and to distinguish different sources of H3.3 protein in embryos, we show here that sperm-derived H3.3 (sH3.3) protein is removed from the sperm genome shortly after fertilization and extruded from the zygotes via the second polar bodies (PBII) during embryogenesis. We also found that the maternal H3.3 (mH3.3) protein is incorporated into the paternal genome as early as 2 h postfertilization and is detectable in the paternal genome until the morula stage. Knockdown of maternal H3.3 resulted in compromised embryonic development both of fertilized embryos and of androgenetic haploid embryos. Furthermore, we report that mH3.3 depletion in oocytes impairs both activation of the Oct4 pluripotency marker gene and global de novo transcription from the paternal genome important for early embryonic development. Our results suggest that H3.3-mediated paternal chromatin remodeling is essential for the development of preimplantation embryos and the activation of the paternal genome during embryogenesis.


Asunto(s)
Blastocisto/metabolismo , Ensamble y Desensamble de Cromatina , Histonas/metabolismo , Herencia Paterna , Activación Transcripcional , Animales , Blastocisto/citología , Blastómeros/citología , Blastómeros/metabolismo , Desarrollo Embrionario , Femenino , Regulación del Desarrollo de la Expresión Génica , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Histonas/antagonistas & inhibidores , Histonas/genética , Masculino , Ratones , Ratones Endogámicos ICR , Ratones Transgénicos , Mórula/citología , Mórula/metabolismo , Factor 3 de Transcripción de Unión a Octámeros/química , Factor 3 de Transcripción de Unión a Octámeros/genética , Factor 3 de Transcripción de Unión a Octámeros/metabolismo , Isoformas de Proteínas/antagonistas & inhibidores , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Interferencia de ARN , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/metabolismo
8.
Biol Reprod ; 100(6): 1431-1439, 2019 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-30883641

RESUMEN

Activity of some endogenous retroviruses (ERVs) has been proven to be important for development of early mammalian embryo. However, abnormal activation of ERVs can also cause genetic diseases due to their ability to retrotranspose, so the regulatory mechanism to limit transcription of ERVs needs to be clarified. Endogenous small interfering RNA (endo-siRNA) has been reported to protect cells against transposable elements (TEs). Here, we determined the role of ERVs long terminal repeat sequences (LTRs) derived endo-siRNAs (LTR-siRNAs) on inhibition of the activity of ERVs during early embryonic development in pig. Seven most highly expressed LTR-siRNAs were identified in porcine zygote by high-throughput small RNA sequencing. We verified that the biogenesis of the LTR-siRNAs was DICER-dependent and they were generated from double-stranded RNA (dsRNA) formed by sense and antisense transcripts of LTRs. And, the expression of sense and antisense of LTRs might be due to the loss of DNA methylation at some LTR loci. Furthermore, we showed that the LTR-siRNAs could regulate early embryonic development by repression of LTRs expression at a post-transcriptional level. So, we propose here, during early embryonic development when epigenetic reprogramming occurs, the endo-siRNA pathway acts as a sophisticated balance of regulatory mechanism for ERV activity.


Asunto(s)
Desarrollo Embrionario/fisiología , Retrovirus Endógenos/fisiología , ARN Interferente Pequeño/fisiología , Porcinos/embriología , Animales , Regulación del Desarrollo de la Expresión Génica , Interferencia de ARN , Ribonucleasa III , Secuencias Repetidas Terminales/genética , Cigoto/crecimiento & desarrollo , Cigoto/fisiología
9.
Dev Biol ; 410(1): 36-44, 2016 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-26708097

RESUMEN

Reciprocal repression of inner cell mass specific factor OCT4 and trophectoderm specific factor CDX2 promotes mouse first lineage segregation. Studies in mouse embryonic stem (ES) cells revealed that they bind to each other's regulatory regions to reciprocally suppress transcription, additionally they form protein complex for mutual antagonism. However, so far the molecular interaction of Oct4 and Cdx2 in other mammal's early embryo is not yet investigated. Here, over-expression of Cdx2 in early porcine embryo showed CDX2 represses Oct4 through neither the transcriptional repression nor forming repressive complex, but promoting OCT4 nuclear export and proteasomal degradation. The results showed novel molecular regulation of CDX2 on Oct4, and provided important clues for clarifying the mechanism of interaction between CDX2 and Oct4 in embryo of mammals other than mouse.


Asunto(s)
Proteínas de Homeodominio/fisiología , Factores de Transcripción de Octámeros/fisiología , Complejo de la Endopetidasa Proteasomal/fisiología , Porcinos/embriología , Transporte Activo de Núcleo Celular , Animales , Células Cultivadas , Leupeptinas/farmacología , Factores de Transcripción de Octámeros/genética , ARN Mensajero/análisis
10.
J Biol Chem ; 291(53): 27334-27342, 2016 12 30.
Artículo en Inglés | MEDLINE | ID: mdl-27821591

RESUMEN

Differentiated cells can be reprogrammed by transcription factors, and these factors that are responsible for successful reprogramming need to be further identified. Here, we show that the neuronal repressor RE1-silencing transcription factor (REST) is rich in porcine oocytes and requires for nuclear transfer (NT)-mediated reprogramming through inhibiting TGFß signaling pathway. REST was dramatically degraded after oocyte activation, but the residual REST was incorporated into the transferred donor nuclei during reprogramming in NT embryos. Inhibition of REST function in oocytes compromised the development of NT embryos but not that of IVF and PA embryos. Bioinformation analysis of putative targets of REST indicated that REST might function on reprogramming in NT embryos by inhibiting TGFß pathway. Further results showed that the developmental failure of REST-inhibited NT embryos could be rescued by treatment of SB431542, an inhibitor of TGFß pathway. Thus, REST is a newly discovered transcription factor that is required for NT-mediated nuclear reprogramming.


Asunto(s)
Blastocisto/metabolismo , Núcleo Celular/genética , Reprogramación Celular , Embrión de Mamíferos/metabolismo , Oocitos/metabolismo , Proteínas Represoras/metabolismo , Factor de Crecimiento Transformador beta/antagonistas & inhibidores , Animales , Blastocisto/citología , Diferenciación Celular , Células Cultivadas , Embrión de Mamíferos/citología , Desarrollo Embrionario , Femenino , Técnicas de Transferencia Nuclear , Oocitos/citología , Proteínas Represoras/genética , Porcinos , Factor de Crecimiento Transformador beta/genética , Factor de Crecimiento Transformador beta/metabolismo
11.
Reprod Fertil Dev ; 29(11): 2168-2174, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28399989

RESUMEN

Both microRNAs (miRNAs) and endogenous small interfering RNAs (endo-siRNAs) play key regulatory roles in gene expression. Some studies have demonstrated that the function of miRNA is suppressed in mouse oocytes, suggesting that endo-siRNA, not miRNA, is essential for female meiosis. This finding has yet to be confirmed in other species. In this study, by knockdown of DICER1, DROSHA and its cofactor DiGeorge syndrome critical region 8 (DGCR8) in porcine oocytes, we found that the proportion of oocytes with DICER1 deficiency that developed to meiosis II (MII) stage was significantly lower than oocytes with DROSHA and DGCR8 deficiency (39.23 versus 68.71 and 71.25% respectively; P<0.05). Oocytes lacking DROSHA and DGCR8 formed a barrel-shaped metaphase I spindle, with chromosomes tightly aligned at the metaphase plate whereas most oocytes (87%) lacking DICER1 showed spindle abnormalities during oocyte in vitro maturation. Furthermore, DICER1 deficiency also resulted in oocyte apoptosis. These results indicate that endo-siRNAs are essential for oocyte maturation in pigs.


Asunto(s)
Apoptosis/fisiología , Técnicas de Maduración In Vitro de los Oocitos/veterinaria , Oocitos/metabolismo , Oogénesis/fisiología , ARN Interferente Pequeño/metabolismo , Animales , ARN Helicasas DEAD-box/genética , ARN Helicasas DEAD-box/metabolismo , Femenino , Meiosis/fisiología , ARN Interferente Pequeño/genética , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Ribonucleasa III/genética , Ribonucleasa III/metabolismo , Porcinos
12.
Reproduction ; 151(1): 9-16, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26515777

RESUMEN

Aberrant epigenetic reprogramming is the main obstacle to the development of somatic cell nuclear transfer (SCNT) embryos and the generation of induced pluripotent stem (iPS) cells, which results in the low reprogramming efficiencies of SCNT and iPS. Histone H3 lysine 27 trimethylation (H3K27me3), as a repressive epigenetic mark, plays important roles in mammalian development and iPS induction. However, the reprogramming of H3K27me3 in pig remains elusive. In this study, we showed that H3K27me3 levels in porcine early cloned embryos were higher than that in IVF embryos. Then GSK126 and GSK-J4, two small molecule inhibitors of H3K27me3 methylase (EZH2) and demethylases (UTX/JMJD3), were used to regulate the H3K27me3 level. The results showed that H3K27me3 level was reduced in cloned embryos after treatment of PEF with 0.75 µM GSK126 for 48 h, incubation of one-cell reconstructed oocytes with 0.1 µM GSK126 and injection of antibody for EZH2 into oocyte. Meanwhile, the development of the cloned embryos was significantly improved after these treatments. On the contrary, GSK-J4 treatment increased the H3K27me3 level in cloned embryos and decreased the cloned embryonic development. Furthermore, iPS efficiency was both increased after reducing the H3K27me3 level in donor cells and in early reprogramming phase. In summary, our results suggest that H3K27me3 acts as an epigenetic barrier in SCNT and iPS reprogramming, and reduction of H3K27me3 level in donor cells and in early reprogramming phase can enhance both porcine SCNT and iPS efficiency.


Asunto(s)
Reprogramación Celular/genética , Epigénesis Genética/fisiología , N-Metiltransferasa de Histona-Lisina/metabolismo , Histonas/metabolismo , Sus scrofa/embriología , Animales , Benzazepinas/farmacología , Clonación de Organismos , Embrión de Mamíferos/química , Desarrollo Embrionario/efectos de los fármacos , Fertilización In Vitro/veterinaria , Histona Demetilasas/antagonistas & inhibidores , Histona Metiltransferasas , N-Metiltransferasa de Histona-Lisina/antagonistas & inhibidores , Histonas/análisis , Indoles/farmacología , Células Madre Pluripotentes Inducidas/fisiología , Técnicas de Transferencia Nuclear/veterinaria , Partenogénesis , Piridonas/farmacología , Pirimidinas/farmacología
13.
J Biol Chem ; 289(10): 6960-6968, 2014 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-24474691

RESUMEN

Nuclear reprogramming of somatic cells can be induced by oocyte factors. Despite numerous attempts, the factors responsible for successful nuclear reprogramming remain elusive. In the present study, we found that porcine oocytes with the first polar body collected at 42 h of in vitro maturation had a stronger ability to support early development of cloned embryos than porcine oocytes with the first polar body collected at 33 h of in vitro maturation. To explore the key reprogramming factors responsible for the difference, we compared proteome signatures of the two groups of oocytes. 18 differentially expressed proteins between these two groups of oocytes were discovered by mass spectrometry (MS). Among these proteins, we especially focused on vimentin (VIM). A certain amount of VIM protein was stored in oocytes and accumulated during oocyte maturation, and maternal VIM was specifically incorporated into transferred somatic nuclei during nuclear reprogramming. When maternal VIM function was inhibited by anti-VIM antibody, the rate of cloned embryos developing to blastocysts was significantly lower than that of IgG antibody-injected embryos and non-injected embryos (12.24 versus 22.57 and 21.10%; p < 0.05), but the development of in vitro fertilization and parthenogenetic activation embryos was not affected. Furthermore, we found that DNA double strand breaks dramatically increased and that the p53 pathway was activated in cloned embryos when VIM function was inhibited. This study demonstrates that maternal VIM, as a genomic protector, is crucial for nuclear reprogramming in porcine cloned embryos.


Asunto(s)
Reprogramación Celular , Clonación de Organismos , Oocitos/fisiología , Porcinos/embriología , Vimentina/metabolismo , Animales , Blastocisto/metabolismo , Blastocisto/fisiología , Desarrollo Embrionario , Femenino , Técnicas de Transferencia Nuclear , Oocitos/metabolismo , Cuerpos Polares/metabolismo , Cuerpos Polares/fisiología , Porcinos/genética , Porcinos/metabolismo , Vimentina/antagonistas & inhibidores
14.
Reproduction ; 148(4): 367-75, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25030891

RESUMEN

Mammalian oocytes possess factors to support fertilization and embryonic development, but knowledge on these oocyte-specific factors is limited. In the current study, we demonstrated that porcine oocytes with the first polar body collected at 33 h of in vitro maturation sustain IVF with higher sperm decondensation and pronuclear formation rates and support in vitro development with higher cleavage and blastocyst rates, compared with those collected at 42 h (P<0.05). Proteomic analysis performed to clarify the mechanisms underlying the differences in developmental competence between oocytes collected at 33 and 42 h led to the identification of 18 differentially expressed proteins, among which protein disulfide isomerase associated 3 (PDIA3) was selected for further study. Inhibition of maternal PDIA3 via antibody injection disrupted sperm decondensation; conversely, overexpression of PDIA3 in oocytes improved sperm decondensation. In addition, sperm decondensation failure in PDIA3 antibody-injected oocytes was rescued by dithiothreitol, a commonly used disulfide bond reducer. Our results collectively report that maternal PDIA3 plays a crucial role in sperm decondensation by reducing protamine disulfide bonds in porcine oocytes, supporting its utility as a potential tool for oocyte selection in assisted reproduction techniques.


Asunto(s)
Oocitos/enzimología , Comunicación Paracrina , Proteína Disulfuro Isomerasas/metabolismo , Interacciones Espermatozoide-Óvulo , Espermatozoides/enzimología , Animales , Células Cultivadas , Femenino , Fertilización In Vitro , Regulación del Desarrollo de la Expresión Génica , Regulación Enzimológica de la Expresión Génica , Técnicas de Maduración In Vitro de los Oocitos , Masculino , Proteína Disulfuro Isomerasas/genética , Proteómica/métodos , ARN Mensajero/metabolismo , Transducción de Señal , Inyecciones de Esperma Intracitoplasmáticas , Porcinos , Factores de Tiempo , Transfección
15.
Transgenic Res ; 23(4): 679-89, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24788205

RESUMEN

For efficient transgenic herd expansion, only the transgenic animals that possess the ability to transmit transgene into next generation are considered for breeding. However, for transgenic pig, practically lacking a pre-breeding screening program, time, labor and money is always wasted to maintain non-transgenic pigs, low or null transgenic transmission pigs and the related fruitless gestations. Developing a pre-breeding screening program would make the transgenic herd expansion more economical and efficient. In this technical report, we proposed a three-step pre-breeding screening program for transgenic boars simply through combining the fluorescence in situ hybridization (FISH) assay with the common pre-breeding screening workflow. In the first step of screening, combined with general transgenic phenotype analysis, FISH is used to identify transgenic boars. In the second step of screening, combined with conventional semen test, FISH is used to detect transgenic sperm, thus to identify the individuals producing high quality semen and transgenic sperm. In the third step of screening, FISH is used to assess the in vitro fertilization embryos, thus finally to identify the individuals with the ability to produce transgenic embryos. By this three-step screening, the non-transgenic boars and boars with no ability to produce transgenic sperm or transgenic embryos would be eliminated; therefore only those boars could produce transgenic offspring are maintained and used for breeding and herd expansion. It is the first time a systematic pre-breeding screening program is proposed for transgenic pigs. This program might also be applied in other transgenic large animals, and provide an economical and efficient strategy for herd expansion.


Asunto(s)
Animales Modificados Genéticamente/genética , Cruzamiento , Embrión de Mamíferos/metabolismo , Fertilización In Vitro/veterinaria , Proteínas Fluorescentes Verdes/genética , Espermatozoides/química , Transgenes/fisiología , Animales , Animales Modificados Genéticamente/crecimiento & desarrollo , ADN/análisis , ADN/genética , Embrión de Mamíferos/citología , Proteínas Fluorescentes Verdes/metabolismo , Hibridación Fluorescente in Situ , Masculino , Reacción en Cadena en Tiempo Real de la Polimerasa , Porcinos
16.
Cell Death Dis ; 15(1): 74, 2024 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-38242874

RESUMEN

Copy number variations (CNVs) play a vital role in regulating genes expression and tumorigenesis. We explored the copy number alterations in early-stage lung adenocarcinoma using high-throughput sequencing and nucleic acid flight mass spectrometry technology, and found that 8q22.1-22.2 is frequently amplified in lung adenocarcinoma tissues. COX6C localizes on the region and its expression is notably enhanced that driven by amplification in lung adenocarcinoma. Knockdown of COX6C significantly inhibits the cell proliferation, and induces S-G2/M cell cycle arrest, mitosis deficiency and apoptosis. Moreover, COX6C depletion causes a deficiency in mitochondrial fusion, and impairment of oxidative phosphorylation. Mechanistically, COX6C-induced mitochondrial deficiency stimulates ROS accumulation and activates AMPK pathway, then leading to abnormality in spindle formation and chromosome segregation, activating spindle assemble checkpoint, causing mitotic arrest, and ultimately inducing cell apoptosis. Collectively, we suggested that copy amplification-mediated COX6C upregulation might serves as a prospective biomarker for prognosis and targeting therapy in patients with lung adenocarcinoma.


Asunto(s)
Adenocarcinoma del Pulmón , Proliferación Celular , Complejo IV de Transporte de Electrones , Neoplasias Pulmonares , Humanos , Adenocarcinoma del Pulmón/genética , Proteínas Quinasas Activadas por AMP/genética , Proteínas Quinasas Activadas por AMP/metabolismo , Apoptosis/genética , Puntos de Control del Ciclo Celular/genética , Línea Celular Tumoral , Proliferación Celular/genética , Variaciones en el Número de Copia de ADN/genética , Puntos de Control de la Fase G2 del Ciclo Celular , Neoplasias Pulmonares/patología , Mitosis/genética , Especies Reactivas de Oxígeno/metabolismo , Complejo IV de Transporte de Electrones/genética , Complejo IV de Transporte de Electrones/metabolismo
17.
Natl Sci Rev ; 11(2): nwad295, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38327665

RESUMEN

Lactate is present at a high level in the microenvironment of mammalian preimplantation embryos in vivo and in vitro. However, its role in preimplantation development is unclear. Here, we report that lactate is highly enriched in the nuclei of early embryos when major zygotic genome activation (ZGA) occurs in humans and mice. The inhibition of its production and uptake results in developmental arrest at the 2-cell stage, major ZGA failure, and loss of lactate-derived H3K18lac, which could be rescued by the addition of Lac-CoA and recapitulated by overexpression of H3K18R mutation. By profiling the landscape of H3K18lac during mouse preimplantation development, we show that H3K18lac is enriched on the promoter regions of most major ZGA genes and correlates with their expressions. In humans, H3K18lac is also enriched in ZGA markers and temporally concomitant with their expressions. Taken together, we profile the landscapes of H3K18lac in mouse and human preimplantation embryos, and demonstrate the important role for H3K18lac in major ZGA, showing that a conserved metabolic mechanism underlies preimplantation development of mammalian embryos.

18.
Xenotransplantation ; 20(6): 438-48, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24112087

RESUMEN

BACKGROUND: The use of a transgenic pig for xenotransplantation and as a cardiovascular disease model has caught much attention in the past decades. The vascular endothelial cell is the primary modification target for the application of genetically modified pigs in this field. However, the powerful porcine endothelial cell-specific promoter is still so rare that the mouse and human promoters are commonly used. In the study, the porcine Tie1 (sTie1) promoter was identified and characterized as a potential endothelial cell-specific promoter to generate a cardiovascular disease model. METHODS: Tie1 promoters with different lengths of 5'-regulatory regions were cloned, and major putative DNA-binding motifs were mutated by site-directed mutagenesis. All fragments were ligated into the luciferase reporter system and were transiently transfected into endothelial cells to identify luciferase activity using a dual luciferase reporter assay. RESULTS: The luciferase activities of sTie1 promoters with different lengths of the 5'-regulatory region were tested. Results showed that the luciferase activity of the 1234-bp sTie1 fragment was the strongest compared with that of others (P < 0.001). Site-directed mutagenesis in transcription-factor-binding sites, including Ets, GATA, and AP2, verified their key roles in regulating transcription, especially sites Ets (-103), GATA (-211), and AP2 (-3). The activities of Tie1 promoters from pig, human, and mouse were significantly different in pig iliac endothelial cells (PIECs) (P < 0.001), and the sTie1 promoter showed the highest activity. Moreover, sTie1 promoter activity could be detected in porcine embryo fibroblasts and skeletal muscle cells. CONCLUSIONS: The sTie1 promoter shows a highly conserved sequence compared with the Tie1 promoters in human and mouse, but it has a greater activity in the porcine endothelial cell line than that of human and mouse promoters. Thus, sTie1 will be a valuable tool for generating a pig cardiovascular disease model.


Asunto(s)
Regiones Promotoras Genéticas , Receptor TIE-1/genética , Sus scrofa/genética , Animales , Animales Modificados Genéticamente , Sitios de Unión/genética , Células Cultivadas , Clonación Molecular , Células Endoteliales/metabolismo , Xenoinjertos , Humanos , Ratones , Modelos Animales , Modelos Cardiovasculares , Mutagénesis Sitio-Dirigida , Eliminación de Secuencia , Sus scrofa/metabolismo
19.
In Vitro Cell Dev Biol Anim ; 59(2): 142-152, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36867291

RESUMEN

Porcine pluripotent stem cells had been derived from different culture systems. PeNK6 is a porcine pluripotent stem cell line that we established from an E5.5 embryo in a defined culture system. Signaling pathways related with pluripotency had been assessed in this cell line, and TGF-ß signaling pathway-related genes were found upregulated significantly. In this study, we elucidated the role of the TGF-ß signaling pathway in PeNK6 through adding small molecule inhibitors, SB431542 (KOSB) or A83-01 (KOA), into the original culture medium (KO) and analyzing the expression and activity of key factors involved in the TGF-ß signaling pathway. In KOSB/KOA medium, the morphology of PeNK6 became compact and the nuclear-to-cytoplasm ratio was increased. The expression of the core transcription factor SOX2 was significantly upregulated compared with cell lines in the control KO medium, and the differentiation potential became balanced among three germ layers rather than bias to neuroectoderm/endoderm as the original PeNK6 did. The results indicated that inhibition of TGF-ß has positive effects on the porcine pluripotency. Based on these results, we established a pluripotent cell line (PeWKSB) from E5.5 blastocyst by employing TGF-ß inhibitors, and the cell line showed improved pluripotency.


Asunto(s)
Células Madre Pluripotentes , Factor de Crecimiento Transformador beta , Animales , Porcinos , Factor de Crecimiento Transformador beta/metabolismo , Diferenciación Celular/genética , Estratos Germinativos/metabolismo , Embrión de Mamíferos
20.
Epigenetics Chromatin ; 16(1): 13, 2023 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-37118755

RESUMEN

BACKGROUND: IDH1/2 hotspot mutations are well known to drive oncogenic mutations in gliomas and are well-defined in the WHO 2021 classification of central nervous system tumors. Specifically, IDH mutations lead to aberrant hypermethylation of under-methylated regions (UMRs) in normal tissues through the disruption of TET enzymes. However, the chromatin reprogramming and transcriptional changes induced by IDH-related hypermethylation in gliomas remain unclear. RESULTS: Here, we have developed a precise computational framework based on Hidden Markov Model to identify altered methylation states of UMRs at single-base resolution. By applying this framework to whole-genome bisulfite sequencing data from 75 normal brain tissues and 15 IDH mutant glioma tissues, we identified two distinct types of hypermethylated UMRs in IDH mutant gliomas. We named them partially hypermethylated UMRs (phUMRs) and fully hypermethylated UMRs (fhUMRs), respectively. We found that the phUMRs and fhUMRs exhibit distinct genomic features and chromatin states. Genes related to fhUMRs were more likely to be repressed in IDH mutant gliomas. In contrast, genes related to phUMRs were prone to be up-regulated in IDH mutant gliomas. Such activation of phUMR genes is associated with the accumulation of active H3K4me3 and the loss of H3K27me3, as well as H3K36me3 accumulation in gene bodies to maintain gene expression stability. In summary, partial erosion on UMRs was accompanied by locus-specific changes in key chromatin marks, which may contribute to oncogene activation. CONCLUSIONS: Our study provides a computational strategy for precise decoding of methylation encroachment patterns in IDH mutant gliomas, revealing potential mechanistic insights into chromatin reprogramming that contribute to oncogenesis.


Asunto(s)
Neoplasias Encefálicas , Glioma , Humanos , Neoplasias Encefálicas/genética , Cromatina/genética , Glioma/genética , Glioma/metabolismo , Glioma/patología , Metilación de ADN , Mutación , Oncogenes , Isocitrato Deshidrogenasa/genética , Isocitrato Deshidrogenasa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA