Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 118
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Mol Pharm ; 18(9): 3342-3351, 2021 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-34324363

RESUMEN

Poor distribution of nanocarriers at the tumor site and insufficient drug penetration into the tissue are major challenges in the development of effective and safe cancer therapy. Here, we aim to enhance the therapeutic effect of liposomes by accumulating doxorubicin-loaded liposomes at high concentrations in and around the tumor, followed by heat-triggered drug release to facilitate low-molecular-weight drug penetration throughout the tumor. A cyclic RGD peptide (cRGD) was incorporated into liposomes decorated with a thermosensitive polymer that allowed precise tuning of drug release temperature (i.e., Polymer-lip) to develop a targeted thermosensitive liposome (cRGD-Polymer-lip). Compared with conventional thermosensitive liposomes, cRGD-Polymer-lip enhanced the binding of liposomes to endothelial cells, leading to their accumulation at the tumor site upon intravenous administration in tumor-bearing mice. Drug release triggered by local heating strongly inhibited tumor growth. Notably, tumor remission was achieved via multiple administrations of cRGD-Polymer-lip and heat treatments. Thus, combining the advantages of tumor neovascular targeting and heat-triggered drug release, these liposomes offer high potential for minimally invasive and effective cancer chemotherapy.


Asunto(s)
Antibióticos Antineoplásicos/administración & dosificación , Sistema de Administración de Fármacos con Nanopartículas/química , Neoplasias/tratamiento farmacológico , Neovascularización Patológica/tratamiento farmacológico , Animales , Antibióticos Antineoplásicos/farmacocinética , Línea Celular Tumoral/trasplante , Modelos Animales de Enfermedad , Doxorrubicina/administración & dosificación , Doxorrubicina/análogos & derivados , Doxorrubicina/farmacocinética , Liberación de Fármacos , Femenino , Calor , Humanos , Liposomas , Ratones , Neoplasias/irrigación sanguínea , Neoplasias/patología , Neovascularización Patológica/patología , Péptidos Cíclicos/química , Polietilenglicoles/administración & dosificación , Polietilenglicoles/farmacocinética , Polímeros/química
2.
Bioconjug Chem ; 29(1): 44-55, 2018 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-29183110

RESUMEN

For the enhancement of therapeutic effects and reduction of side effects derived from anticancer drugs in cancer chemotherapy, it is imperative to develop drug delivery systems with cancer-specificity and controlled release function inside cancer cells. pH-sensitive liposomes are useful as an intracellular drug delivery system because of their abilities to transfer their contents into the cell interior through fusion or destabilization of endosome, which has weakly acidic environment. We earlier reported liposomes modified with various types of pH-sensitive polymers based on synthetic polymers and biopolymers as vehicles for intracellular drug delivery systems. In this study, hyaluronic acid (HA)-based pH-sensitive polymers were designed as multifunctional polymers having not only pH-sensitivity but also targeting properties to cells expressing CD44, which is known as a cancer cell surface marker. Carboxyl group-introduced HA derivatives of two types, MGlu-HA and CHex-HA, which have a more hydrophobic side chain structure than that of MGlu-HA, were synthesized by reaction with various dicarboxylic anhydrides. These polymer-modified liposomes were stable at neutral pH, but showed content release under weakly acidic conditions. CHex-HA-modified liposomes delivered their contents into CD44-expressing cells more efficiently than HA-modified or MGlu-HA-modified liposomes or unmodified liposomes, whereas the same liposomes were taken up only slightly by cells expressing CD44 proteins less. Competition assay using free HA or other polymers revealed that HA derivative-modified liposomes might be recognized by CD44. Therefore, HA-derivative-modified liposomes are useful as cell-specific intracellular drug delivery systems.


Asunto(s)
Antineoplásicos/administración & dosificación , Preparaciones de Acción Retardada/química , Sistemas de Liberación de Medicamentos , Ácido Hialurónico/química , Liposomas/química , Antineoplásicos/farmacocinética , Preparaciones de Acción Retardada/metabolismo , Células HeLa , Humanos , Receptores de Hialuranos/metabolismo , Ácido Hialurónico/metabolismo , Concentración de Iones de Hidrógeno , Liposomas/metabolismo , Células MCF-7 , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Polímeros/química , Polímeros/metabolismo
3.
J Liposome Res ; 28(4): 275-284, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28826275

RESUMEN

Transdermal drug delivery systems are a key technology for skin-related diseases and for cosmetics development. The delivery of active ingredients to an appropriate site or target cells can greatly improve the efficacy of medical and cosmetic agents. For this study, liposome-based transdermal delivery systems were developed using pH-responsive phytosterol derivatives as liposome components. Succinylated phytosterol (Suc-PS) and 2-carboxy-cyclohexane-1-carboxylated phytosterol (CHex-PS) were synthesized by esterification of hydroxy groups of phytosterol. Modification of phytosterol derivatives on 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) liposomes was confirmed by negatively zeta potentials at alkaline pH and the change of zeta potentials with decreasing pH. In response to acidic pH and temperatures higher than body temperature, Suc-PS-containing and CHex-PS-containing liposomes exhibited content release at intracellular acidic compartments of the melanocytes at the basement membrane of the skin. Phytosterol-derivative-containing liposomes were taken up by murine melanoma-derived B16-F10 cells. These liposomes delivered their contents into endosomes and cytosol of B16-F10 cells. Furthermore, phytosterol-derivative-containing liposomes penetrated the 3 D skin models and reached the basement membrane. Results show that pH-responsive phytosterol-derivative-containing DMPC liposomes are promising for use in transdermal medical or cosmetic agent delivery to melanocytes.


Asunto(s)
Sistemas de Liberación de Medicamentos , Fluoresceínas/química , Liposomas , Fitosteroles , Administración Cutánea , Animales , Línea Celular Tumoral , Fluoresceínas/administración & dosificación , Liposomas/química , Melanocitos/efectos de los fármacos , Ratones , Fitosteroles/química , Piel/efectos de los fármacos , Piel/metabolismo
4.
Molecules ; 21(10)2016 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-27681717

RESUMEN

To establish peptide vaccine-based cancer immunotherapy, we investigated the improvement of antigenic peptides by encapsulation with pH-sensitive fusogenic polymer-modified liposomes for induction of antigen-specific immunity. The liposomes were prepared by modification of egg yolk phosphatidylcholine and l-dioleoyl phosphatidylethanolamine with 3-methyl-glutarylated hyperbranched poly(glycidol) (MGlu-HPG) and were loaded with antigenic peptides derived from ovalbumin (OVA) OVA-I (SIINFEKL), and OVA-II (PSISQAVHAAHAEINEAPßA), which bind, respectively, to major histocompatibility complex (MHC) class I and class II molecules on dendritic cell (DCs). The peptide-loaded liposomes were taken up efficiently by DCs. The peptides were delivered into their cytosol. Administration of OVA-I-loaded MGlu-HPG-modified liposomes to mice bearing OVA-expressing E.G7-OVA tumors induced the activation of OVA-specific CTLs much more efficiently than the administration of free OVA-I peptide did. Mice strongly rejected E.G7-OVA cells after immunization with OVA-I peptide-loaded MGlu-HPG liposomes, although mice treated with free OVA-I peptide only slightly rejected the cells. Furthermore, efficient suppression of tumor volume was observed when tumor-bearing mice were immunized with OVA-I-peptide-loaded liposomes. Immunization with OVA-II-loaded MGlu-HPG-modified liposomes exhibited much lower tumor-suppressive effects. Results indicate that MGlu-HPG liposomes might be useful for improvement of CTL-inducing peptides for efficient cancer immunotherapy.

5.
Angew Chem Int Ed Engl ; 55(22): 6476-81, 2016 05 23.
Artículo en Inglés | MEDLINE | ID: mdl-27079747

RESUMEN

Cancer is one of the primary causes of death worldwide. A high-precision analysis of biomolecular behaviors in cancer cells at the single-cell level and more effective cancer therapies are urgently required. Here, we describe the development of a magnetically- and near infrared light-triggered optical control method, based on nanorobotics, for the analyses of cellular functions. A new type of nanotransporters, composed of magnetic iron nanoparticles, carbon nanohorns, and liposomes, was synthesized for the spatiotemporal control of cellular functions in cells and mice. Our technology will help to create a new state-of-the-art tool for the comprehensive analysis of "real" biological molecular information at the single-cell level, and it may also help in the development of innovative cancer therapies.


Asunto(s)
Liposomas/farmacología , Nanopartículas de Magnetita/química , Nanotubos de Carbono/química , beta-Galactosidasa/antagonistas & inhibidores , Supervivencia Celular/efectos de los fármacos , Células HeLa , Humanos , Rayos Infrarrojos , Liposomas/química , Sustancias Macromoleculares/química , Sustancias Macromoleculares/farmacología , Fenómenos Magnéticos , Estructura Molecular , beta-Galactosidasa/metabolismo
6.
Angew Chem Int Ed Engl ; 55(36): 10612-5, 2016 08 26.
Artículo en Inglés | MEDLINE | ID: mdl-27467415

RESUMEN

The design of inhibitors of intracellular protein-protein interactions (PPIs) remains a challenge in chemical biology and drug discovery. We propose a cyclized helix-loop-helix (cHLH) peptide as a scaffold for generating cell-permeable PPI inhibitors through bifunctional grafting: epitope grafting to provide binding activity, and arginine grafting to endow cell-permeability. To inhibit p53-HDM2 interactions, the p53 epitope was grafted onto the C-terminal helix and six Arg residues were grafted onto another helix. The designed peptide cHLHp53-R showed high inhibitory activity for this interaction, and computational analysis suggested a binding mode for HDM2. Confocal microscopy of cells treated with fluorescently labeled cHLHp53-R revealed cell membrane penetration and cytosolic localization. The peptide inhibited the growth of HCT116 and LnCap cancer cells. This strategy of bifunctional grafting onto a well-structured peptide scaffold could facilitate the generation of inhibitors for intracellular PPIs.


Asunto(s)
Arginina/análogos & derivados , Arginina/farmacología , Diseño de Fármacos , Péptidos Cíclicos/química , Péptidos Cíclicos/farmacología , Mapas de Interacción de Proteínas/efectos de los fármacos , Secuencia de Aminoácidos , Línea Celular Tumoral , Humanos , Simulación del Acoplamiento Molecular , Conformación Proteica en Hélice alfa , Mapeo de Interacción de Proteínas , Proteínas Proto-Oncogénicas c-mdm2/antagonistas & inhibidores , Proteínas Proto-Oncogénicas c-mdm2/química , Proteínas Proto-Oncogénicas c-mdm2/metabolismo , Proteína p53 Supresora de Tumor/antagonistas & inhibidores , Proteína p53 Supresora de Tumor/química , Proteína p53 Supresora de Tumor/metabolismo
7.
Opt Express ; 23(19): 25158-70, 2015 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-26406714

RESUMEN

The photorefractive (PR) response and dynamics are investigated in a methyl-substituted poly(triarylamine) (PTAA)-based PR composite. The charge transfer complex between PTAA and an added small amount of second acceptor, (tris(8-hydroxyquinolinato)aluminium) Alq(3), effectively suppresses the photoconductivity, and thus the sample is able to withstand the dielectric breakdown at a high electric field. The resulting PR response is enhanced at a higher electric field. Sub-millisecond PR response times were observed for both optical diffraction and optical amplification: i.e., 350 µs for optical amplification and 860 µs for optical diffraction observed under 532 nm illumination (0.534 W cm(-2)) at 60 V µm(-1). The response time of optical amplification followed the photocurrent response time of 367 µs.

8.
Langmuir ; 31(31): 8583-8, 2015 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-26186489

RESUMEN

Physicochemical properties were evaluated for polyion complex micelles (PIC), which were prepared from TiO2 nanoparticles and polyallylamine bearing poly(ethylene glycol) grafts (PAA-g-PEG). The zeta potentials of PIC micelles prepared using PAA-g-PEG with different molecular weights of PEG grafts were measured in different aqueous media (i.e., water, phosphate buffer, and Tris/HCl buffer). The PIC micelles in phosphate buffer and Tris/HCl buffer exhibited quite different zeta potentials despite the same salt concentration (10 mM) of the buffer solutions. More specifically, the zeta potential of the PIC micelles in phosphate buffer was effectively neutralized owing to counteranion condensation effects. The onset of counterion condensation into the PIC micelles was dependent on the valence of the anionic molecules and the ability of the PIC micelles to entrap multivalent anionic molecules. Furthermore, as confirmed by laser confocal microscopy observation, multivalent anionic molecules could be delivered to cultured cells through entrapment in the PIC micelles based on multivalent anion condensation effects.

9.
Langmuir ; 31(18): 5105-14, 2015 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-25897891

RESUMEN

Dendron lipids designed to consist of amine-terminated polyamidoamine G1 dendron and two octadecyl chains were used for the preparation of pH-responsive molecular assemblies having phase structures that are changed through their dynamic molecular shape. The dendron lipid contains two primary amines and two tertiary amines in the dendron moiety, changing its charged state in the pH region between pH 10 and pH 4. The assemblies were shown to take a vesicle structure at neutral and alkaline pHs, but their structure changed to a micelle-like structure below pH 6.4. Because this pH region corresponds to one in which tertiary amines of the dendron lipid became protonated, protonation of tertiary amines in addition to primary amines in the dendron moiety might affect its dynamic molecular shape, resulting in a sharp pH response of the assemblies. The assemblies tended to form aggregates when taking on a vesicle form with a gel phase, but incorporation of a poly(ethylene glycol)-lipid provided dendron lipid vesicles with both sharp pH response and high colloidal stability. The poly(ethylene glycol)-incorporated dendron lipid vesicles tightly retained ovalbumin molecules in their internal aqueous space but released them almost completely at pH 6.0. In addition, the vesicles were shown to achieve efficient ovalbumin delivery into cytosol of DC2.4 cells (mouse dendritic cell line) after internalization through endocytosis.


Asunto(s)
Citoplasma/metabolismo , Dendrímeros/metabolismo , Animales , Rastreo Diferencial de Calorimetría , Línea Celular , Endocitosis/fisiología , Polarización de Fluorescencia , Concentración de Iones de Hidrógeno , Ratones
10.
Nanomedicine ; 11(1): 229-38, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25229542

RESUMEN

Multi-modal thermo-sensitive polymer-modified liposomes (MTPLs) containing an anticancer drug, MR contrast agent, and fluorescent dye have been investigated as "theranostic" nanodevices that can be used to monitor drug delivery in cancer therapy. Here, we measured the physical characteristics of MTPLs, observed the dynamics of MTPLs in vivo, visualized heat-triggered drug release using MRI, and evaluated the treatment effects of the MTPLs with and without heating. In vitro experiments demonstrated that the MTPLs released drugs at temperatures above 41°C. In vivo MTPLs accumulated in tumor tissue, with the accumulation maximized for 4-12hours. MR signal in the tumor was significantly elevated after mild heating for 15 minutes, indicating release of the contrast agent from the MTPLs was facilitated by heat-triggering. Tumor size after treatment with MTPLs and heating was significantly smaller than those of the control groups. In conclusion, MTPLs with MRI are useful for low-invasive cancer theranostics.


Asunto(s)
Antineoplásicos/química , Sistemas de Liberación de Medicamentos , Liposomas/química , Neoplasias/patología , Polímeros/química , Animales , Línea Celular Tumoral , Medios de Contraste/química , Doxorrubicina/administración & dosificación , Femenino , Colorantes Fluorescentes/química , Calor , Imagen por Resonancia Magnética , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Nanomedicina , Nanopartículas/química , Trasplante de Neoplasias , Neoplasias/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA