Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
BMC Microbiol ; 24(1): 150, 2024 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-38678223

RESUMEN

BACKGROUND: An increasing number of studies investigate various human microbiotas and their roles in the development of diseases, maintenance of health states, and balanced signaling towards the brain. Current data demonstrate that the nasal microbiota contains a unique and highly variable array of commensal bacteria and opportunistic pathogens. However, we need to understand how to harness current knowledge, enrich nasal microbiota with beneficial microorganisms, and prevent pathogenic developments. RESULTS: In this study, we have obtained nasal, nasopharyngeal, and bronchoalveolar lavage fluid samples from healthy volunteers and patients suffering from chronic respiratory tract diseases for full-length 16 S rRNA sequencing analysis using Oxford Nanopore Technologies. Demographic and clinical data were collected simultaneously. The microbiome analysis of 97 people from Lithuania suffering from chronic inflammatory respiratory tract disease and healthy volunteers revealed that the human nasal microbiome represents the microbiome of the upper airways well. CONCLUSIONS: The nasal microbiota of patients was enriched with opportunistic pathogens, which could be used as indicators of respiratory tract conditions. In addition, we observed that a healthy human nasal microbiome contained several plant- and bee-associated species, suggesting the possibility of enriching human nasal microbiota via such exposures when needed. These candidate probiotics should be investigated for their modulating effects on airway and lung epithelia, immunogenic properties, neurotransmitter content, and roles in maintaining respiratory health and nose-brain interrelationships.


Asunto(s)
Bacterias , Microbiota , ARN Ribosómico 16S , Humanos , Femenino , Masculino , ARN Ribosómico 16S/genética , Persona de Mediana Edad , Adulto , Bacterias/clasificación , Bacterias/genética , Bacterias/aislamiento & purificación , Enfermedad Crónica , Líquido del Lavado Bronquioalveolar/microbiología , Nasofaringe/microbiología , Enfermedades Respiratorias/microbiología , Lituania , Nariz/microbiología , Anciano , Adulto Joven , Cavidad Nasal/microbiología , Análisis de Secuencia de ADN/métodos , Voluntarios Sanos
2.
Proc Natl Acad Sci U S A ; 115(3): E506-E515, 2018 01 16.
Artículo en Inglés | MEDLINE | ID: mdl-29284754

RESUMEN

Knowledge of viral diversity is expanding greatly, but many lineages remain underexplored. We surveyed RNA viruses in 52 cultured monoxenous relatives of the human parasite Leishmania (Crithidia and Leptomonas), as well as plant-infecting PhytomonasLeptomonas pyrrhocoris was a hotbed for viral discovery, carrying a virus (Leptomonas pyrrhocoris ostravirus 1) with a highly divergent RNA-dependent RNA polymerase missed by conventional BLAST searches, an emergent clade of tombus-like viruses, and an example of viral endogenization. A deep-branching clade of trypanosomatid narnaviruses was found, notable as Leptomonas seymouri bearing Narna-like virus 1 (LepseyNLV1) have been reported in cultures recovered from patients with visceral leishmaniasis. A deep-branching trypanosomatid viral lineage showing strong affinities to bunyaviruses was termed "Leishbunyavirus" (LBV) and judged sufficiently distinct to warrant assignment within a proposed family termed "Leishbunyaviridae" Numerous relatives of trypanosomatid viruses were found in insect metatranscriptomic surveys, which likely arise from trypanosomatid microbiota. Despite extensive sampling we found no relatives of the totivirus Leishmaniavirus (LRV1/2), implying that it was acquired at about the same time the Leishmania became able to parasitize vertebrates. As viruses were found in over a quarter of isolates tested, many more are likely to be found in the >600 unsurveyed trypanosomatid species. Viral loss was occasionally observed in culture, providing potentially isogenic virus-free lines enabling studies probing the biological role of trypanosomatid viruses. These data shed important insights on the emergence of viruses within an important trypanosomatid clade relevant to human disease.


Asunto(s)
Virus ARN/genética , Virus ARN/aislamiento & purificación , Trypanosomatina/virología , Animales , Infecciones por Euglenozoos/parasitología , Infecciones por Euglenozoos/veterinaria , Variación Genética , Especificidad del Huésped , Interacciones Huésped-Patógeno , Humanos , Filogenia
3.
Clin Epigenetics ; 16(1): 76, 2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38845031

RESUMEN

Tatton-Brown-Rahman syndrome (TBRS) is a rare congenital genetic disorder caused by autosomal dominant pathogenic variants in the DNA methyltransferase DNMT3A gene. Typical TBRS clinical features are overgrowth, intellectual disability, and minor facial anomalies. However, since the syndrome was first described in 2014, a widening spectrum of abnormalities is being described. Cardiovascular abnormalities are less commonly reported but can be a major complication of the syndrome. This article describes a family of three individuals diagnosed with TBRS in adulthood and highlights the variable expression of cardiovascular features. A 34-year-old proband presented with progressive aortic dilatation, mitral valve (MV) regurgitation, left ventricular (LV) dilatation, and ventricular arrhythmias. The affected family members (mother and brother) were diagnosed with MV regurgitation, LV dilatation, and arrhythmias. Exome sequencing and computational protein analysis suggested that the novel familial DNMT3A mutation Ser775Tyr is located in the methyltransferase domain, however, distant from the active site or DNA-binding loops. Nevertheless, this bulky substitution may have a significant effect on DNMT3A protein structure, dynamics, and function. Analysis of peripheral blood cfDNA and transcriptome showed shortened mononucleosome fragments and altered gene expression in a number of genes related to cardiovascular health and of yet undescribed function, including several lncRNAs. This highlights the importance of epigenetic regulation by DNMT3A on cardiovascular system development and function. From the clinical perspective, we suggest that new patients diagnosed with congenital DNMT3A variants and TBRS require close examination and follow-up for aortic dilatation and valvular disease because these conditions can progress rapidly. Moreover, personalized treatments, based on the specific DNMT3A variants and the different pathways of their function loss, can be envisioned in the future.


Asunto(s)
Cardiomiopatías , ADN (Citosina-5-)-Metiltransferasas , ADN Metiltransferasa 3A , Linaje , Adulto , Femenino , Humanos , Masculino , Enfermedades de la Aorta/genética , Cardiomiopatías/genética , ADN (Citosina-5-)-Metiltransferasas/genética , ADN Metiltransferasa 3A/genética , Secuenciación del Exoma/métodos , Discapacidad Intelectual/genética , Mutación
4.
J Cheminform ; 15(1): 25, 2023 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-36814296

RESUMEN

Published reports of chemical compounds often contain multiple machine-readable descriptions which may supplement each other in order to yield coherent and complete chemical representations. This publication presents a method to cross-check such descriptions using a canonical representation and isomorphism of molecular graphs. If immediate agreement between compound descriptions is not found, the algorithm derives the minimal set of simplifications required for both descriptions to arrive to a matching form (if any). The proposed algorithm is used to cross-check chemical descriptions from the Crystallography Open Database to identify coherently described entries as well as those requiring further curation.

5.
Database (Oxford) ; 20232023 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-37290059

RESUMEN

We introduce a protein-ligand binding database (PLBD) that presents thermodynamic and kinetic data of reversible protein interactions with small molecule compounds. The manually curated binding data are linked to protein-ligand crystal structures, enabling structure-thermodynamics correlations to be determined. The database contains over 5500 binding datasets of 556 sulfonamide compound interactions with the 12 catalytically active human carbonic anhydrase isozymes defined by fluorescent thermal shift assay, isothermal titration calorimetry, inhibition of enzymatic activity and surface plasmon resonance. In the PLBD, the intrinsic thermodynamic parameters of interactions are provided, which account for the binding-linked protonation reactions. In addition to the protein-ligand binding affinities, the database provides calorimetrically measured binding enthalpies, providing additional mechanistic understanding. The PLBD can be applied to investigations of protein-ligand recognition and could be integrated into small molecule drug design. Database URL https://plbd.org/.


Asunto(s)
Inhibidores de Anhidrasa Carbónica , Anhidrasas Carbónicas , Humanos , Ligandos , Inhibidores de Anhidrasa Carbónica/farmacología , Inhibidores de Anhidrasa Carbónica/química , Inhibidores de Anhidrasa Carbónica/metabolismo , Termodinámica , Anhidrasas Carbónicas/química , Anhidrasas Carbónicas/metabolismo , Unión Proteica
6.
Commun Biol ; 5(1): 847, 2022 08 20.
Artículo en Inglés | MEDLINE | ID: mdl-35986212

RESUMEN

L-BC virus persists in the budding yeast Saccharomyces cerevisiae, whereas other viruses from the family Totiviridae infect a diverse group of organisms including protists, fungi, arthropods, and vertebrates. The presence of totiviruses alters the fitness of the host organisms, for example, by maintaining the killer system in yeast or increasing the virulence of Leishmania guyanensis. Despite the importance of totiviruses for their host survival, there is limited information about Totivirus structure and assembly. Here we used cryo-electron microscopy to determine the structure of L-BC virus to a resolution of 2.9 Å. The L-BC capsid is organized with icosahedral symmetry, with each asymmetric unit composed of two copies of the capsid protein. Decamers of capsid proteins are stabilized by domain swapping of the C-termini of subunits located around icosahedral fivefold axes. We show that capsids of 9% of particles in a purified L-BC sample were open and lacked one decamer of capsid proteins. The existence of the open particles together with domain swapping within a decamer provides evidence that Totiviridae capsids assemble from the decamers of capsid proteins. Furthermore, the open particles may be assembly intermediates that are prepared for the incorporation of the virus (+) strand RNA.


Asunto(s)
Totivirus , Virus , Animales , Cápside/metabolismo , Proteínas de la Cápside/metabolismo , Microscopía por Crioelectrón , Totivirus/química , Totivirus/genética
7.
Microorganisms ; 9(2)2021 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-33498746

RESUMEN

Saccharomyces yeasts are widely distributed in the environment and microbiota of higher organisms. The killer phenotype of yeast, encoded by double-stranded RNA (dsRNA) virus systems, is a valuable trait for host survival. The mutual relationship between the different yet clearly defined LA and M virus pairs suggests complex fitting context. To define the basis of this compatibility, we established a system devoted to challenging inherent yeast viruses using viral proteins expressed in trans. Virus exclusion by abridged capsid proteins was found to be complete and nonspecific, indicating the presence of generic mechanisms of Totiviridae maintenance in yeast cells. Indications of specificity in both the exclusion of LA viruses and the maintenance of M viruses by viral capsid proteins expressed in trans were observed. This precise specificity was further established by demonstrating the importance of the satellite virus in the maintenance of LA virus, suggesting the selfish behavior of M dsRNA.

8.
Viruses ; 10(10)2018 10 16.
Artículo en Inglés | MEDLINE | ID: mdl-30332789

RESUMEN

The Saccharomycetaceae yeast family recently became recognized for expanding of the repertoire of different dsRNA-based viruses, highlighting the need for understanding of their cross-dependence. We isolated the Saccharomyces paradoxus AML-15-66 killer strain from spontaneous fermentation of serviceberries and identified helper and satellite viruses of the family Totiviridae, which are responsible for the killing phenotype. The corresponding full dsRNA genomes of viruses have been cloned and sequenced. Sequence analysis of SpV-LA-66 identified it to be most similar to S. paradoxus LA-28 type viruses, while SpV-M66 was mostly similar to the SpV-M21 virus. Sequence and functional analysis revealed significant differences between the K66 and the K28 toxins. The structural organization of the K66 protein resembled those of the K1/K2 type toxins. The AML-15-66 strain possesses the most expressed killing property towards the K28 toxin-producing strain. A genetic screen performed on S. cerevisiae YKO library strains revealed 125 gene products important for the functioning of the S. paradoxus K66 toxin, with 85% of the discovered modulators shared with S. cerevisiae K2 or K1 toxins. Investigation of the K66 protein binding to cells and different polysaccharides implies the ß-1,6 glucans to be the primary receptors of S. paradoxus K66 toxin. For the first time, we demonstrated the coherent habitation of different types of helper and satellite viruses in a wild-type S. paradoxus strain.


Asunto(s)
Virus Fúngicos/aislamiento & purificación , Virus Helper/aislamiento & purificación , Saccharomyces/virología , Virus Satélites/aislamiento & purificación , Totiviridae/aislamiento & purificación , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Virus Fúngicos/clasificación , Virus Fúngicos/genética , Virus Fúngicos/fisiología , Genoma Viral , Virus Helper/clasificación , Virus Helper/genética , Virus Helper/fisiología , Filogenia , Saccharomyces/genética , Saccharomyces/metabolismo , Virus Satélites/clasificación , Virus Satélites/genética , Virus Satélites/fisiología , Totiviridae/clasificación , Totiviridae/genética , Totiviridae/fisiología
9.
Toxins (Basel) ; 9(8)2017 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-28757599

RESUMEN

Competitive and naturally occurring yeast killer phenotype is governed by coinfection with dsRNA viruses. Long-term relationship between the host cell and viruses appear to be beneficial and co-adaptive; however, the impact of viral dsRNA on the host gene expression has barely been investigated. Here, we determined the transcriptomic profiles of the host Saccharomyces cerevisiae upon the loss of the M-2 dsRNA alone and the M-2 along with the L-A-lus dsRNAs. We provide a comprehensive study based on the high-throughput RNA-Seq data, Gene Ontology and the analysis of the interaction networks. We identified 486 genes differentially expressed after curing yeast cells of the M-2 dsRNA and 715 genes affected by the elimination of both M-2 and L-A-lus dsRNAs. We report that most of the transcriptional responses induced by viral dsRNAs are moderate. Differently expressed genes are related to ribosome biogenesis, mitochondrial functions, stress response, biosynthesis of lipids and amino acids. Our study also provided insight into the virus-host and virus-virus interplays.


Asunto(s)
Regulación Fúngica de la Expresión Génica , Interacciones Huésped-Patógeno , Virus ARN/fisiología , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/virología , ARN Bicatenario , ARN Viral , Saccharomyces cerevisiae/metabolismo
10.
Genome Announc ; 4(3)2016 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-27313294

RESUMEN

We cloned and sequenced the complete genome of the L-A-28 virus from the Saccharomyces cerevisiae K28 killer strain. This sequence completes the set of currently identified L-A helper viruses required for expression of double-stranded RNA-originated killer phenotypes in baking yeast.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA