Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 116(46): 23061-23067, 2019 11 12.
Artículo en Inglés | MEDLINE | ID: mdl-31666327

RESUMEN

Cellulase enzymes deconstruct recalcitrant cellulose into soluble sugars, making them a biocatalyst of biotechnological interest for use in the nascent lignocellulosic bioeconomy. Cellobiohydrolases (CBHs) are cellulases capable of liberating many sugar molecules in a processive manner without dissociating from the substrate. Within the complete processive cycle of CBHs, dissociation from the cellulose substrate is rate limiting, but the molecular mechanism of this step is unknown. Here, we present a direct comparison of potential molecular mechanisms for dissociation via Hamiltonian replica exchange molecular dynamics of the model fungal CBH, Trichoderma reesei Cel7A. Computational rate estimates indicate that stepwise cellulose dethreading from the binding tunnel is 4 orders of magnitude faster than a clamshell mechanism, in which the substrate-enclosing loops open and release the substrate without reversing. We also present the crystal structure of a disulfide variant that covalently links substrate-enclosing loops on either side of the substrate-binding tunnel, which constitutes a CBH that can only dissociate via stepwise dethreading. Biochemical measurements indicate that this variant has a dissociation rate constant essentially equivalent to the wild type, implying that dethreading is likely the predominant mechanism for dissociation.


Asunto(s)
Celulasas/química , Proteínas Fúngicas/química , Trichoderma/enzimología , Sitios de Unión , Dominio Catalítico , Celulasas/metabolismo , Celulosa/química , Celulosa/metabolismo , Proteínas Fúngicas/metabolismo , Cinética , Simulación de Dinámica Molecular , Trichoderma/química
2.
J Biol Chem ; 294(5): 1516-1528, 2019 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-30514757

RESUMEN

Lytic polysaccharide monooxygenases (LPMOs) are monocopper enzymes that catalyze oxidative cleavage of glycosidic bonds in polysaccharides in the presence of an external electron donor (reductant). In the classical O2-driven monooxygenase reaction, the reductant is needed in stoichiometric amounts. In a recently discovered, more efficient H2O2-driven reaction, the reductant would be needed only for the initial reduction (priming) of the LPMO to its catalytically active Cu(I) form. However, the influence of the reductant on reducing the LPMO or on H2O2 production in the reaction remains undefined. Here, we conducted a detailed kinetic characterization to investigate how the reductant affects H2O2-driven degradation of 14C-labeled chitin by a bacterial LPMO, SmLPMO10A (formerly CBP21). Sensitive detection of 14C-labeled products and careful experimental set-ups enabled discrimination between the effects of the reductant on LPMO priming and other effects, in particular enzyme-independent production of H2O2 through reactions with O2 When supplied with H2O2, SmLPMO10A catalyzed 18 oxidative cleavages per molecule of ascorbic acid, suggesting a "priming reduction" reaction. The dependence of initial rates of chitin degradation on reductant concentration followed hyperbolic saturation kinetics, and differences between the reductants were manifested in large variations in their half-saturating concentrations (KmRapp). Theoretical analyses revealed that KmRapp decreases with a decreasing rate of polysaccharide-independent LPMO reoxidation (by either O2 or H2O2). We conclude that the efficiency of LPMO priming depends on the relative contributions of reductant reactivity, on the LPMO's polysaccharide monooxygenase/peroxygenase and reductant oxidase/peroxidase activities, and on reaction conditions, such as O2, H2O2, and polysaccharide concentrations.


Asunto(s)
Bacterias/enzimología , Proteínas Bacterianas/metabolismo , Quitina/metabolismo , Peróxido de Hidrógeno/farmacología , Oxigenasas de Función Mixta/metabolismo , Polisacáridos Bacterianos/metabolismo , Sustancias Reductoras/farmacología , Cinética , Oxidantes/farmacología , Oxidación-Reducción , Especificidad por Sustrato
3.
Biochemistry ; 56(1): 167-178, 2017 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-28026938

RESUMEN

Cellobiohydrolases (CBHs) make up an important group of enzymes for both natural carbon cycling and industrial deconstruction of lignocellulosic biomass. The consecutive hydrolysis of one cellulose strand relies on an intricate pattern of enzyme-substrate interactions in the long, tunnel-shaped binding site of the CBH. In this work, we have investigated the initial complexation mode with cellulose of the most thoroughly studied CBH, Cel7A from Hypocrea jecorina (HjCel7A). We found that HjCel7A predominantly produces glucose when it initiates a processive run on insoluble microcrystalline cellulose, confirming the validity of an even and odd product ratio as an estimate of processivity. Moreover, the glucose released from cellulose was predominantly α-glucose. A link between the initial binding mode of the enzyme and the reducing end configuration was investigated by inhibition studies with the two anomers of cellobiose. A clear preference for ß-cellobiose in product binding site +2 was observed for HjCel7A, but not the homologous endoglucanase, HjCe7B. Possible relationships between this anomeric preference in the product site and the prevalence of odd-numbered initial-cut products are discussed, and a correlation between processivity and anomer selectivity is proposed.


Asunto(s)
Celobiosa/metabolismo , Celulosa 1,4-beta-Celobiosidasa/metabolismo , Proteínas Fúngicas/metabolismo , Hypocrea/enzimología , Algoritmos , Técnicas Biosensibles , Celobiosa/química , Celulosa/análogos & derivados , Celulosa/química , Celulosa/metabolismo , Celulosa 1,4-beta-Celobiosidasa/química , Cromatografía Liquida , Cristalografía por Rayos X , Proteínas Fúngicas/química , Glucosa/química , Glucosa/metabolismo , Hypocrea/metabolismo , Isoenzimas/química , Isoenzimas/metabolismo , Cinética , Espectrometría de Masas , Modelos Moleculares , Estructura Molecular , Unión Proteica , Dominios Proteicos , Especificidad por Sustrato , Tetrosas/química , Tetrosas/metabolismo
4.
J Biol Chem ; 291(50): 26013-26023, 2016 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-27780868

RESUMEN

Structural polysaccharides like cellulose and chitin are abundant and their enzymatic degradation to soluble sugars is an important route in green chemistry. Processive glycoside hydrolases (GHs), like cellobiohydrolase Cel7A of Trichoderma reesei (TrCel7A) are key components of efficient enzyme systems. TrCel7A consists of a catalytic domain (CD) and a smaller carbohydrate-binding module (CBM) connected through the glycosylated linker peptide. A tunnel-shaped active site rests in the CD and contains 10 glucose unit binding sites. The active site of TrCel7A is lined with four Trp residues with two of them, Trp-40 and Trp-38, in the substrate binding sites near the tunnel entrance. Although addressed in numerous studies the elucidation of the role of CBM and active site aromatics has been obscured by a complex multistep mechanism of processive GHs. Here we studied the role of the CBM-linker and Trp-38 of TrCel7A with respect to binding affinity, on- and off-rates, processivity, and synergism with endoglucanase. The CBM-linker increased the on-rate and substrate affinity of the enzyme. The Trp-38 to Ala substitution resulted in increased off-rates and decreased processivity. The effect of the Trp-38 to Ala substitution on on-rates was strongly dependent on the presence of the CBM-linker. This compensation between CBM-linker and Trp-38 indicates synergism between CBM-linker and CD in feeding the cellulose chain into the active site. The inter-domain synergism was pre-requisite for the efficient degradation of cellulose in the presence of endoglucanase.


Asunto(s)
Celulasa/química , Celulosa/química , Proteínas Fúngicas/química , Trichoderma/enzimología , Dominio Catalítico
5.
Nat Commun ; 11(1): 5786, 2020 11 13.
Artículo en Inglés | MEDLINE | ID: mdl-33188177

RESUMEN

Lytic polysaccharide monooxygenases (LPMOs) are widely distributed in Nature, where they catalyze the hydroxylation of glycosidic bonds in polysaccharides. Despite the importance of LPMOs in the global carbon cycle and in industrial biomass conversion, the catalytic properties of these monocopper enzymes remain enigmatic. Strikingly, there is a remarkable lack of kinetic data, likely due to a multitude of experimental challenges related to the insoluble nature of LPMO substrates, like cellulose and chitin, and to the occurrence of multiple side reactions. Here, we employed competition between well characterized reference enzymes and LPMOs for the H2O2 co-substrate to kinetically characterize LPMO-catalyzed cellulose oxidation. LPMOs of both bacterial and fungal origin showed high peroxygenase efficiencies, with kcat/KmH2O2 values in the order of 105-106 M-1 s-1. Besides providing crucial insight into the cellulolytic peroxygenase reaction, these results show that LPMOs belonging to multiple families and active on multiple substrates are true peroxygenases.


Asunto(s)
Celulosa/metabolismo , Oxigenasas de Función Mixta/metabolismo , Bacterias/enzimología , Catalasa/metabolismo , Quitina/metabolismo , Hongos/enzimología , Peroxidasa de Rábano Silvestre/metabolismo , Peróxido de Hidrógeno/metabolismo , Cinética , Nanopartículas/química , Especificidad por Sustrato
6.
Biotechnol Biofuels ; 12: 235, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31624497

RESUMEN

BACKGROUND: Enzyme-aided valorization of lignocellulose represents a green and sustainable alternative to the traditional chemical industry. The recently discovered lytic polysaccharide monooxygenases (LPMOs) are important components of the state-of-the art enzyme cocktails for cellulose conversion. Yet, these monocopper enzymes are poorly characterized in terms of their kinetics, as exemplified by the growing evidence for that H2O2 may be a more efficient co-substrate for LPMOs than O2. LPMOs need external electron donors and one key question of relevance for bioprocess development is whether the required reducing power may be provided by the lignocellulosic substrate. RESULTS: Here, we show that the liquid fraction (LF) resulting from hydrothermal pretreatment of wheat straw supports LPMO activity on both chitin and cellulose. The initial, transient activity burst of the LPMO reaction was caused by the H2O2 present in the LF before addition of LPMO, while the steady-state rate of LPMO reaction was limited by the LPMO-independent production of H2O2 in the LF. H2O2 is an intermediate of LF oxidation as evidenced by a slow H2O2 accumulation in LF, despite high H2O2 production rates. This H2O2 scavenging ability of LF is important since high concentrations of H2O2 may lead to irreversible inactivation of LPMOs. CONCLUSIONS: Our results support the growing understanding that fine-tuned control over the rates of H2O2 production and consumption in different, enzymatic and non-enzymatic reactions is essential for harnessing the full catalytic potential of LPMOs in lignocellulose valorization.

7.
Biotechnol Biofuels ; 6(1): 135, 2013 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-24053778

RESUMEN

BACKGROUND: The use of the enzymatic hydrolysis of lignocellulose with subsequent fermentation to ethanol provides a green alternative for the production of transportation fuels. Because of its recalcitrant nature, the lignocellulosic biomass must be pretreated before enzymatic hydrolysis. However, the pretreatment often results in the formation of compounds that are inhibitory for the enzymes or fermenting organism. Although well recognized, little quantitative information on the inhibition of individual cellulase components by identified inhibitors is available. RESULTS: Strong cellulase inhibitors were separated from the liquid fraction of the hydrothermal pretreatment of wheat straw. HPLC and mass-spectroscopy analyses confirmed that the inhibitors were oligosaccharides (inhibitory oligosaccharides, IOS) with a degree of polymerization from 7 to 16. The IOS are composed of a mixture of xylo- (XOS) and gluco-oligosaccharides (GOS). We propose that XOS and GOS are the fragments of the xylan backbone and mixed-linkage ß-glucans, respectively. The IOS were approximately 100 times stronger inhibitors for Trichoderma reesei cellobiohydrolases (CBHs) than cellobiose, which is one of the strongest inhibitors of these enzymes reported to date. Inhibition of endoglucanases (EGs) by IOS was weaker than that of CBHs. Most of the tested cellulases and hemicellulases were able to slowly degrade IOS and reduce the inhibitory power of the liquid fraction to some extent. The most efficient single enzyme component here was T. reesei EG TrCel7B. Although reduced by the enzyme treatment, the residual inhibitory power of IOS and the liquid fraction was strong enough to silence the major component of the T. reesei cellulase system, CBH TrCel7A. CONCLUSIONS: The cellulase inhibitors described here may be responsible for the poor yields from the enzymatic conversion of the whole slurries from lignocellulose pretreatment under conditions that do not favor complete degradation of hemicellulose. Identification of the inhibitory compounds helps to design better enzyme mixtures for their degradation and to optimize the pretreatment regimes to minimize their formation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA