Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 118(38)2021 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-34521751

RESUMEN

Northern peatlands store large amounts of carbon. Observations indicate that forests and peatlands in northern biomes can be alternative stable states for a range of landscape settings. Climatic and hydrological changes may reduce the resilience of peatlands and forests, induce persistent shifts between these states, and release the carbon stored in peatlands. Here, we present a dynamic simulation model constrained and validated by a wide set of observations to quantify how feedbacks in water and carbon cycling control resilience of both peatlands and forests in northern landscapes. Our results show that 34% of Europe (area) has a climate that can currently sustain existing rainwater-fed peatlands (raised bogs). However, raised bog initiation and restoration by water conservation measures after the original peat soil has disappeared is only possible in 10% of Europe where the climate allows raised bogs to initiate and outcompete forests. Moreover, in another 10% of Europe, existing raised bogs (concerning ∼20% of the European raised bogs) are already affected by ongoing climate change. Here, forests may overgrow peatlands, which could potentially release in the order of 4% (∼24 Pg carbon) of the European soil organic carbon pool. Our study demonstrates quantitatively that preserving and restoring peatlands requires looking beyond peatland-specific processes and taking into account wider landscape-scale feedbacks with forest ecosystems.


Asunto(s)
Carbono/química , Ciclo del Carbono , Cambio Climático , Ecosistema , Europa (Continente) , Bosques , Suelo/química , Agua/química , Humedales
2.
Sensors (Basel) ; 21(24)2021 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-34960559

RESUMEN

The workflow for estimating the temperature in agricultural fields from multiple sensors needs to be optimized upon testing each type of sensor's actual user performance. In this sense, readily available miniaturized UAV-based thermal infrared (TIR) cameras can be combined with proximal sensors in measuring the surface temperature. Before the two types of cameras can be operationally used in the field, laboratory experiments are needed to fully understand their capabilities and all the influencing factors. We present the measurement results of laboratory experiments of UAV-borne WIRIS 2nd GEN and handheld FLIR E8-XT cameras. For these uncooled sensors, it took 30 to 60 min for the measured signal to stabilize and the sensor temperature drifted continuously. The drifting sensor temperature was strongly correlated to the measured signal. Specifically for WIRIS, the automated non-uniformity correction (NUC) contributed to extra uncertainty in measurements. Another problem was the temperature measurement dependency on various ambient environmental parameters. An increase in the measuring distance resulted in the underestimation of surface temperature, though the degree of change may also come from reflected radiation from neighboring objects, water vapor absorption, and the object size in the field of view (FOV). Wind and radiation tests suggested that these factors can contribute to the uncertainty of several Celsius degrees in measured results. Based on these indoor experiment results, we provide a list of suggestions on the potential practices for deriving accurate temperature data from radiometric miniaturized TIR cameras in actual field practices for (agro-)environmental research.


Asunto(s)
Temperatura Corporal , Laboratorios , Temperatura
3.
Sensors (Basel) ; 20(24)2020 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-33333952

RESUMEN

The use of spectral data is seen as a fast and non-destructive method capable of monitoring pasture biomass. Although there is great potential in this technique, both end users and sensor manufacturers are uncertain about the necessary sensor specifications and achievable accuracies in an operational scenario. This study presents a straightforward parametric method able to accurately retrieve the hyperspectral signature of perennial ryegrass (Lolium perenne) canopies from multispectral data collected within a two-year period in Australia and the Netherlands. The retrieved hyperspectral data were employed to generate optimal indices and continuum-removed spectral features available in the scientific literature. For performance comparison, both these simulated features and a set of currently employed vegetation indices, derived from the original band values, were used as inputs in a random forest algorithm and accuracies of both methods were compared. Our results have shown that both sets of features present similar accuracies (root mean square error (RMSE) ≈490 and 620 kg DM/ha) when assessed in cross-validation and spatial cross-validation, respectively. These results suggest that for pasture biomass retrieval solely from top-of-canopy reflectance (ranging from 550 to 790 nm), better performing methods do not rely on the use of hyperspectral or, yet, in a larger number of bands than those already available in current sensors.


Asunto(s)
Lolium , Análisis Espectral , Algoritmos , Australia , Biomasa , Países Bajos
4.
Glob Chang Biol ; 25(6): 1905-1921, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30761695

RESUMEN

Prediction of ecosystem response to global environmental change is a pressing scientific challenge of major societal relevance. Many ecosystems display nonlinear responses to environmental change, and may even undergo practically irreversible 'regime shifts' that initiate ecosystem collapse. Recently, early warning signals based on spatiotemporal metrics have been proposed for the identification of impending regime shifts. The rapidly increasing availability of remotely sensed data provides excellent opportunities to apply such model-based spatial early warning signals in the real world, to assess ecosystem resilience and identify impending regime shifts induced by global change. Such information would allow land-managers and policy makers to interfere and avoid catastrophic shifts, but also to induce regime shifts that move ecosystems to a desired state. Here, we show that the application of spatial early warning signals in real-world landscapes presents unique and unexpected challenges, and may result in misleading conclusions when employed without careful consideration of the spatial data and processes at hand. We identify key practical and theoretical issues and provide guidelines for applying spatial early warning signals in heterogeneous, real-world landscapes based on literature review and examples from real-world data. Major identified issues include (1) spatial heterogeneity in real-world landscapes may enhance reversibility of regime shifts and boost landscape-level resilience to environmental change (2) ecosystem states are often difficult to define, while these definitions have great impact on spatial early warning signals and (3) spatial environmental variability and socio-economic factors may affect spatial patterns, spatial early warning signals and associated regime shift predictions. We propose a novel framework, shifting from an ecosystem perspective towards a landscape approach. The framework can be used to identify conditions under which resilience assessment with spatial remotely sensed data may be successful, to support well-informed application of spatial early warning signals, and to improve predictions of ecosystem responses to global environmental change.


Asunto(s)
Ecosistema , Ambiente , Modelos Teóricos , Análisis Espacial
5.
Sensors (Basel) ; 19(2)2019 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-30658487

RESUMEN

The right moment to harvest apples in fruit orchards is still decided after persistent monitoring of the fruit orchards via local inspection and using manual instrumentation. However, this task is tedious, time consuming, and requires costly human effort because of the manual work that is necessary to sample large orchard parcels. The sensor miniaturization and the advances in gas detection technology have increased the usage of gas sensors and detectors in many industrial applications. This work explores the combination of small-sized sensors under Unmanned Aerial Vehicles (UAV) to understand its suitability for ethylene sensing in an apple orchard. To accomplish this goal, a simulated environment built from field data was used to understand the spatial distribution of ethylene when subject to the orchard environment and the wind of the UAV rotors. The simulation results indicate the main driving variables of the ethylene emission. Additionally, preliminary field tests are also reported. It was demonstrated that the minimum sensing wind speed cut-off is 2 ms-1 and that a small commercial UAV (like Phantom 3 Professional) can sense volatile ethylene at less than six meters from the ground with a detection probability of a maximum of 10 % . This work is a step forward in the usage of aerial remote sensing technology to detect the optimal harvest time.

6.
Sensors (Basel) ; 19(24)2019 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-31842326

RESUMEN

There is a growing demand in both food quality and quantity, but as of now, one-third of all food produced for human consumption is lost due to pests and other pathogens accounting for roughly 40% of pre-harvest loss in potatoes. Pathogens in potato plants, like the Erwinia bacteria and the PVYNTN virus for example, exhibit symptoms of varying severity that are not easily captured by pixel-based classes (as these ignore shape, texture, and context in general). The aim of this research is to develop an object-based image analysis (OBIA) method for trait retrieval of individual potato plants that maximizes information output from Unmanned Aerial Vehicle (UAV) RGB very high resolution (VHR) imagery and its derivatives, to be used for disease detection of the Solanum tuberosum. The approach proposed can be split in two steps: (1) object-based mapping of potato plants using an optimized implementation of large scale mean-shift segmentation (LSMSS), and (2) classification of disease using a random forest (RF) model for a set of morphological traits computed from their associative objects. The approach was proven viable as the associative RF model detected presence of Erwinia and PVY pathogens with a maximum F1 score of 0.75 and an average Matthews Correlation Coefficient (MCC) score of 0.47. It also shows that low-altitude imagery acquired with a commercial UAV is a viable off-the-shelf tool for precision farming, and potato pathogen detection.


Asunto(s)
Procesamiento de Imagen Asistido por Computador , Enfermedades de las Plantas/virología , Potyvirus/aislamiento & purificación , Solanum tuberosum/virología , Altitud , Componentes Aéreos de las Plantas/virología , Potyvirus/patogenicidad , Solanum tuberosum/crecimiento & desarrollo
7.
Sensors (Basel) ; 17(10)2017 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-29039755

RESUMEN

In recent years, LIght Detection And Ranging (LiDAR) and especially Terrestrial Laser Scanning (TLS) systems have shown the potential to revolutionise forest structural characterisation by providing unprecedented 3D data. However, manned Airborne Laser Scanning (ALS) requires costly campaigns and produces relatively low point density, while TLS is labour intense and time demanding. Unmanned Aerial Vehicle (UAV)-borne laser scanning can be the way in between. In this study, we present first results and experiences with the RIEGL RiCOPTER with VUX ® -1UAV ALS system and compare it with the well tested RIEGL VZ-400 TLS system. We scanned the same forest plots with both systems over the course of two days. We derived Digital Terrain Model (DTMs), Digital Surface Model (DSMs) and finally Canopy Height Model (CHMs) from the resulting point clouds. ALS CHMs were on average 11.5 c m higher in five plots with different canopy conditions. This showed that TLS could not always detect the top of canopy. Moreover, we extracted trunk segments of 58 trees for ALS and TLS simultaneously, of which 39 could be used to model Diameter at Breast Height (DBH). ALS DBH showed a high agreement with TLS DBH with a correlation coefficient of 0.98 and root mean square error of 4.24 c m . We conclude that RiCOPTER has the potential to perform comparable to TLS for estimating forest canopy height and DBH under the studied forest conditions. Further research should be directed to testing UAV-borne LiDAR for explicit 3D modelling of whole trees to estimate tree volume and subsequently Above-Ground Biomass (AGB).

8.
Sensors (Basel) ; 17(10)2017 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-28974050

RESUMEN

The authors would like to correct Figure 13 and Table A2, as well as the text related to the data presented in both of them, as indicated below, considering that an error in the calculations involving Equation (2), described in the Section 2.8 of the Materials and Methods Section, resulted in the communication of incorrect values [...].

9.
Sensors (Basel) ; 17(6)2017 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-28629159

RESUMEN

Vegetation properties can be estimated using optical sensors, acquiring data on board of different platforms. For instance, ground-based and Unmanned Aerial Vehicle (UAV)-borne spectrometers can measure reflectance in narrow spectral bands, while different modelling approaches, like regressions fitted to vegetation indices, can relate spectra with crop traits. Although monitoring frameworks using multiple sensors can be more flexible, they may result in higher inaccuracy due to differences related to the sensors characteristics, which can affect information sampling. Also organic production systems can benefit from continuous monitoring focusing on crop management and stress detection, but few studies have evaluated applications with this objective. In this study, ground-based and UAV spectrometers were compared in the context of organic potato cultivation. Relatively accurate estimates were obtained for leaf chlorophyll (RMSE = 6.07 µg·cm-2), leaf area index (RMSE = 0.67 m²·m-2), canopy chlorophyll (RMSE = 0.24 g·m-2) and ground cover (RMSE = 5.5%) using five UAV-based data acquisitions, from 43 to 99 days after planting. These retrievals are slightly better than those derived from ground-based measurements (RMSE = 7.25 µg·cm-2, 0.85 m²·m-2, 0.28 g·m-2 and 6.8%, respectively), for the same period. Excluding observations corresponding to the first acquisition increased retrieval accuracy and made outputs more comparable between sensors, due to relatively low vegetation cover on this date. Intercomparison of vegetation indices indicated that indices based on the contrast between spectral bands in the visible and near-infrared, like OSAVI, MCARI2 and CIg provided, at certain extent, robust outputs that could be transferred between sensors. Information sampling at plot level by both sensing solutions resulted in comparable discriminative potential concerning advanced stages of late blight incidence. These results indicate that optical sensors, and their integration, have great potential for monitoring this specific organic cropping system.


Asunto(s)
Solanum tuberosum , Clorofila , Hojas de la Planta
10.
Data Brief ; 49: 109356, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37492231

RESUMEN

There is a growing body of literature that recognises the importance of UAVs in precision agriculture tasks. Currently, flowering thinning tasks in orchard management rely on the decisions derived from time-consuming manual flower cluster counting in the field by an agrotechnician. Yet it is hard to guarantee the counting accuracy due to numerous human factors. The present dataset contains UAV images during the full blooming period of an apple orchard for three consecutive years, 2018, 2019, and 2020. It is directly linked to a research article entitled "Feasibility assessment of tree-level flower intensity quantification from UAV RGB imagery: A triennial study in an apple orchard". The data collection site was an apple orchard located at Randwijk, Overbetuwe, The Netherlands (51.938, 5.7068 in WGS84 UTM 31U). Moreover, the flower cluster number and floridity ground truth are also provided in one row from the orchard. The UAV flights were conducted with different flying altitudes, camera resolutions, and lighting conditions. This dataset aims to support researchers focussing on remote sensing, machine vision, deep learning, and image classification, and the stakeholders interested in precision horticulture and orchard management. It can be used for flowering intensity estimation and prediction, and spatial and temporal flowering variability mapping by using digital photogrammetry and 3D reconstruction.

11.
Sensors (Basel) ; 11(7): 6656-84, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-22163978

RESUMEN

Sensor technology, which benefits from high temporal measuring resolution, real-time data transfer and high spatial resolution of sensor data that shows in-field variations, has the potential to provide added value for crop production. The present paper explores how sensors and sensor networks have been utilised in the crop production process and what their added-value and the main bottlenecks are from the perspective of users. The focus is on sensor based applications and on requirements that users pose for them. Literature and two use cases were reviewed and applications were classified according to the crop production process: sensing of growth conditions, fertilising, irrigation, plant protection, harvesting and fleet control. The potential of sensor technology was widely acknowledged along the crop production chain. Users of the sensors require easy-to-use and reliable applications that are actionable in crop production at reasonable costs. The challenges are to develop sensor technology, data interoperability and management tools as well as data and measurement services in a way that requirements can be met, and potential benefits and added value can be realized in the farms in terms of higher yields, improved quality of yields, decreased input costs and production risks, and less work time and load.


Asunto(s)
Productos Agrícolas/crecimiento & desarrollo , Redes Neurales de la Computación , Tecnología Inalámbrica/estadística & datos numéricos , Riego Agrícola , Fertilizantes/estadística & datos numéricos , Plaguicidas/economía , Tecnología Inalámbrica/economía
12.
Philos Trans R Soc Lond B Biol Sci ; 376(1834): 20200170, 2021 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-34365817

RESUMEN

Soils are the fundament of terrestrial ecosystems. Across the globe we find different soil types with different properties resulting from the interacting soil forming factors: parent material, climate, topography, organisms and time. Here we present the role of soils in habitat formation and maintenance in natural systems, and reflect on how humans have modified soils from local to global scale. Soils host a tremendous diversity of life forms, most of them microscopic in size. We do not yet know all the functionalities of this diversity at the level of individual taxa or through their interactions. However, we do know that the interactions and feedbacks between soil life, plants and soil chemistry and physics are essential for soil and habitat formation, maintenance and restoration. Moreover, the couplings between soils and major cycles of carbon, nutrients and water are essential for supporting the production of food, feed and fibre, drinking water and greenhouse gas balances. Soils take thousands of years to form, yet are lost very quickly through a multitude of stressors. The current status of our soils globally is worrisome, yet with concerted action we can bend the curve and create win-wins of soil and habitat conservation, regeneration and sustainable development. This article is part of the theme issue 'The role of soils in delivering Nature's Contributions to People'.


Asunto(s)
Conservación de los Recursos Naturales , Ecosistema , Suelo/química
13.
Micromachines (Basel) ; 11(8)2020 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-32796583

RESUMEN

The use of drones in combination with remote sensors have displayed increasing interest over the last years due to its potential to automate monitoring processes. In this study, a novel approach of a small flying e-nose is proposed by assembling a set of AlphaSense electrochemical-sensors to a DJI Matrix 100 unmanned aerial vehicle (UAV). The system was tested on an outdoor field with a source of NO2. Field tests were conducted in a 100 m2 area on two dates with different wind speed levels varying from low (0.0-2.9m/s) to high (2.1-5.3m/s), two flight patterns zigzag and spiral and at three altitudes (3, 6 and 9 m). The objective of this study is to evaluate the sensors responsiveness and performance when subject to distinct flying conditions. A Wilcoxon rank-sum test showed significant difference between flight patterns only under High Wind conditions, with Spiral flights being slightly superior than Zigzag. With the aim of contributing to other studies in the same field, the data used in this analysis will be shared with the scientific community.

14.
Pest Manag Sci ; 76(9): 2994-3002, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32246738

RESUMEN

BACKGROUND: The fruit fly Drosophila suzukii, or spotted wing drosophila (SWD), is a serious pest worldwide, attacking many soft-skinned fruits. An efficient monitoring system that identifies and counts SWD in crops and their surroundings is therefore essential for integrated pest management (IPM) strategies. Existing methods, such as catching flies in liquid bait traps and counting them manually, are costly, time-consuming and labour-intensive. To overcome these limitations, we studied insect trap monitoring using image-based object detection with deep learning. RESULTS: Based on an image database with 4753 annotated SWD flies, we trained a ResNet-18-based deep convolutional neural network to detect and count SWD, including sex prediction and discrimination. The results show that SWD can be detected with an area under the precision recall curve (AUC) of 0.506 (female) and 0.603 (male) in digital images taken from a static position. For images collected using an unmanned aerial vehicle (UAV), the algorithm detected SWD individuals with an AUC of 0.086 (female) and 0.284 (male). The lower AUC for the aerial imagery was due to lower image quality caused by stabilisation manoeuvres of the UAV during image collection. CONCLUSION: Our results indicate that it is possible to monitor SWD using deep learning and object detection. Moreover, the results demonstrate the potential of UAVs to monitor insect traps, which could be valuable in the development of autonomous insect monitoring systems and IPM. © 2020 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Asunto(s)
Aprendizaje Profundo , Drosophila , Animales , Productos Agrícolas , Femenino , Frutas , Humanos , Control de Insectos , Masculino
15.
Sensors (Basel) ; 9(4): 2371-88, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-22574019

RESUMEN

This paper describes the development of a sensor web based approach which combines earth observation and in situ sensor data to derive typical information offered by a dynamic web mapping service (WMS). A prototype has been developed which provides daily maps of vegetation productivity for the Netherlands with a spatial resolution of 250 m. Daily available MODIS surface reflectance products and meteorological parameters obtained through a Sensor Observation Service (SOS) were used as input for a vegetation productivity model. This paper presents the vegetation productivity model, the sensor data sources and the implementation of the automated processing facility. Finally, an evaluation is made of the opportunities and limitations of sensor web based approaches for the development of web services which combine both satellite and in situ sensor sources.

16.
Sci Total Environ ; 619-620: 1133-1142, 2018 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-29734592

RESUMEN

Environmental sensing data provide crucial information for environment-related decision-making. Formal data are provided by official environmental institutes. Beyond those, however, there is a growing body of so-called informal sensing data, which are contributed by citizens using low-cost sensors. How good are these informal data, and how might they be applied, next to formal environmental sensing data? Could both types of sensing data be gainfully integrated? This paper presents the results of an online survey investigating perceptions within citizen science communities, environmental institutes and their networks of formal and informal environmental sensing data. The results show that citizens and experts had different views of formal and informal environmental sensing data, particularly on measurement frequency and the data information provision power. However, there was agreement, too, for example, on the accuracy of formal environmental sensing data. Furthermore, both agreed that the integration of formal and informal environmental sensing data offered potential for improvements on several aspects, particularly spatial coverage, data quantity and measurement frequency. Interestingly, the accuracy of informal environmental sensing data was largely unknown to both experts and citizens. This suggests the need for further investigation of informal environmental sensing data and the potential for its effective integration with formal environmental sensing data, if hurdles like standardisation can be overcome.


Asunto(s)
Monitoreo del Ambiente/métodos , Política Ambiental , Toma de Decisiones , Humanos , Percepción
17.
PLoS One ; 12(5): e0175700, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28472823

RESUMEN

As the sustainability of agricultural citizen science projects depends on volunteer farmers who contribute their time, energy and skills, understanding their motivation is important to attract and retain participants in citizen science projects. The objectives of this study were to assess 1) farmers' motivations to participate as citizen scientists and 2) farmers' mobile telephone usage. Building on motivational factors identified from previous citizen science studies, a questionnaire based methodology was developed which allowed the analysis of motivational factors and their relation to farmers' characteristics. The questionnaire was applied in three communities of farmers, in countries from different continents, participating as citizen scientists. We used statistical tests to compare motivational factors within and among the three countries. In addition, the relations between motivational factors and farmers characteristics were assessed. Lastly, Principal Component Analysis (PCA) was used to group farmers based on their motivations. Although there was an overlap between the types of motivations, for Indian farmers a collectivistic type of motivation (i.e., contribute to scientific research) was more important than egoistic and altruistic motivations. For Ethiopian and Honduran farmers an egoistic intrinsic type of motivation (i.e., interest in sharing information) was most important. While fun has appeared to be an important egoistic intrinsic factor to participate in other citizen science projects, the smallholder farmers involved in this research valued 'passing free time' the lowest. Two major groups of farmers were distinguished: one motivated by sharing information (egoistic intrinsic), helping (altruism) and contribute to scientific research (collectivistic) and one motivated by egoistic extrinsic factors (expectation, expert interaction and community interaction). Country and education level were the two most important farmers' characteristics that explain around 20% of the variation in farmers motivations. For educated farmers, contributing to scientific research was a more important motivation to participate as citizen scientists compared to less educated farmers. We conclude that motivations to participate in citizen science are different for smallholders in agriculture compared to other sectors. Citizen science does have high potential, but easy to use mechanisms are needed. Moreover, gamification may increase the egoistic intrinsic motivation of farmers.


Asunto(s)
Agricultura , Teléfono Celular , Agricultores , Motivación , Adulto , Etiopía , Femenino , Honduras , Humanos , India , Masculino , Persona de Mediana Edad , Análisis de Componente Principal , Encuestas y Cuestionarios
18.
PLoS One ; 11(3): e0147121, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27018852

RESUMEN

Increasing awareness of the issue of deforestation and degradation in the tropics has resulted in efforts to monitor forest resources in tropical countries. Advances in satellite-based remote sensing and ground-based technologies have allowed for monitoring of forests with high spatial, temporal and thematic detail. Despite these advances, there is a need to engage communities in monitoring activities and include these stakeholders in national forest monitoring systems. In this study, we analyzed activity data (deforestation and forest degradation) collected by local forest experts over a 3-year period in an Afro-montane forest area in southwestern Ethiopia and corresponding Landsat Time Series (LTS). Local expert data included forest change attributes, geo-location and photo evidence recorded using mobile phones with integrated GPS and photo capabilities. We also assembled LTS using all available data from all spectral bands and a suite of additional indices and temporal metrics based on time series trajectory analysis. We predicted deforestation, degradation or stable forests using random forest models trained with data from local experts and LTS spectral-temporal metrics as model covariates. Resulting models predicted deforestation and degradation with an out of bag (OOB) error estimate of 29% overall, and 26% and 31% for the deforestation and degradation classes, respectively. By dividing the local expert data into training and operational phases corresponding to local monitoring activities, we found that forest change models improved as more local expert data were used. Finally, we produced maps of deforestation and degradation using the most important spectral bands. The results in this study represent some of the first to combine local expert based forest change data and dense LTS, demonstrating the complementary value of both continuous data streams. Our results underpin the utility of both datasets and provide a useful foundation for integrated forest monitoring systems relying on data streams from diverse sources.


Asunto(s)
Conservación de los Recursos Naturales , Modelos Teóricos , Árboles , Sistemas de Información Geográfica , Aprendizaje Automático , Fotograbar , Factores de Tiempo
19.
Sensors (Basel) ; 9(9): 6819-22, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-22423199
20.
Ecol Evol ; 4(6): 706-19, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24683454

RESUMEN

Trait predictions from leaf spectral properties are mainly applied to tree species, while herbaceous systems received little attention in this topic. Whether similar trait-spectrum relations can be derived for herbaceous plants that differ strongly in growing strategy and environmental constraints is therefore unknown. We used partial least squares regression to relate key traits to leaf spectra (reflectance, transmittance, and absorbance) for 35 herbaceous species, sampled from a wide range of environmental conditions. Specific Leaf Area and nutrient-related traits (N and P content) were poorly predicted from any spectrum, although N prediction improved when expressed on a per area basis (mg/m(2) leaf surface) instead of mass basis (mg/g dry matter). Leaf dry matter content was moderately to good correlated with spectra. We explain our results by the range of environmental constraints encountered by herbaceous species; both N and P limitations as well as a range of light and water availabilities occurred. This weakened the relation between the measured response traits and the leaf constituents that are truly responsible for leaf spectral behavior. Indeed, N predictions improve considering solely upper or under canopy species. Therefore, trait predictions in herbaceous systems should focus on traits relating to dry matter content and the true, underlying drivers of spectral properties.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA