Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Circ Res ; 134(11): 1405-1423, 2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38639096

RESUMEN

BACKGROUND: While our understanding of the single-cell gene expression patterns underlying the transformation of vascular cell types during the progression of atherosclerosis is rapidly improving, the clinical and pathophysiological relevance of these changes remains poorly understood. METHODS: Single-cell RNA sequencing data generated with SmartSeq2 (≈8000 genes/cell) in 16 588 single cells isolated during atherosclerosis progression in Ldlr-/-Apob100/100 mice with human-like plasma lipoproteins and from humans with asymptomatic and symptomatic carotid plaques was clustered into multiple subtypes. For clinical and pathophysiological context, the advanced-stage and symptomatic subtype clusters were integrated with 135 tissue-specific (atherosclerotic aortic wall, mammary artery, liver, skeletal muscle, and visceral and subcutaneous, fat) gene-regulatory networks (GRNs) inferred from 600 coronary artery disease patients in the STARNET (Stockholm-Tartu Atherosclerosis Reverse Network Engineering Task) study. RESULTS: Advanced stages of atherosclerosis progression and symptomatic carotid plaques were largely characterized by 3 smooth muscle cells (SMCs), and 3 macrophage subtype clusters with extracellular matrix organization/osteogenic (SMC), and M1-type proinflammatory/Trem2-high lipid-associated (macrophage) phenotypes. Integrative analysis of these 6 clusters with STARNET revealed significant enrichments of 3 arterial wall GRNs: GRN33 (macrophage), GRN39 (SMC), and GRN122 (macrophage) with major contributions to coronary artery disease heritability and strong associations with clinical scores of coronary atherosclerosis severity. The presence and pathophysiological relevance of GRN39 were verified in 5 independent RNAseq data sets obtained from the human coronary and aortic artery, and primary SMCs and by targeting its top-key drivers, FRZB and ALCAM in cultured human coronary artery SMCs. CONCLUSIONS: By identifying and integrating the most gene-rich single-cell subclusters of atherosclerosis to date with a coronary artery disease framework of GRNs, GRN39 was identified and independently validated as being critical for the transformation of contractile SMCs into an osteogenic phenotype promoting advanced, symptomatic atherosclerosis.


Asunto(s)
Aterosclerosis , Redes Reguladoras de Genes , Análisis de la Célula Individual , Humanos , Animales , Aterosclerosis/genética , Aterosclerosis/metabolismo , Aterosclerosis/patología , Ratones , Miocitos del Músculo Liso/metabolismo , Miocitos del Músculo Liso/patología , Masculino , Placa Aterosclerótica , Progresión de la Enfermedad , Femenino , Macrófagos/metabolismo , Macrófagos/patología , Ratones Noqueados , Receptores de LDL/genética , Receptores de LDL/metabolismo , Ratones Endogámicos C57BL , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patología
2.
Proc Natl Acad Sci U S A ; 117(27): 15818-15826, 2020 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-32541024

RESUMEN

Atherosclerosis is the process underlying heart attack and stroke. Despite decades of research, its pathogenesis remains unclear. Dogma suggests that atherosclerotic plaques expand primarily via the accumulation of cholesterol and inflammatory cells. However, recent evidence suggests that a substantial portion of the plaque may arise from a subset of "dedifferentiated" vascular smooth muscle cells (SMCs) which proliferate in a clonal fashion. Herein we use multicolor lineage-tracing models to confirm that the mature SMC can give rise to a hyperproliferative cell which appears to promote inflammation via elaboration of complement-dependent anaphylatoxins. Despite being extensively opsonized with prophagocytic complement fragments, we find that this cell also escapes immune surveillance by neighboring macrophages, thereby exacerbating its relative survival advantage. Mechanistic studies indicate this phenomenon results from a generalized opsonin-sensing defect acquired by macrophages during polarization. This defect coincides with the noncanonical up-regulation of so-called don't eat me molecules on inflamed phagocytes, which reduces their capacity for programmed cell removal (PrCR). Knockdown or knockout of the key antiphagocytic molecule CD47 restores the ability of macrophages to sense and clear opsonized targets in vitro, allowing for potent and targeted suppression of clonal SMC expansion in the plaque in vivo. Because integrated clinical and genomic analyses indicate that similar pathways are active in humans with cardiovascular disease, these studies suggest that the clonally expanding SMC may represent a translational target for treating atherosclerosis.


Asunto(s)
Aterosclerosis/metabolismo , Clonación Molecular , Activación de Complemento , Miocitos del Músculo Liso/metabolismo , Fagocitosis/fisiología , Animales , Antígeno CD47/metabolismo , Linaje de la Célula , Proliferación Celular , Complemento C3/genética , Complemento C3/metabolismo , Femenino , Humanos , Inflamación , Macrófagos/metabolismo , Masculino , Ratones Noqueados para ApoE , Miocitos del Músculo Liso/citología , Placa Aterosclerótica/metabolismo , Análisis de Secuencia de ARN , Regulación hacia Arriba
3.
Circulation ; 143(7): 713-726, 2021 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-33499648

RESUMEN

BACKGROUND: Although sex differences in coronary artery disease are widely accepted with women developing more stable atherosclerosis than men, the underlying pathobiology of such differences remains largely unknown. In coronary artery disease, recent integrative systems biological studies have inferred gene regulatory networks (GRNs). Within these GRNs, key driver genes have shown great promise but have thus far been unidentified in women. METHODS: We generated sex-specific GRNs of the atherosclerotic arterial wall in 160 women and age-matched men in the STARNET study (Stockholm-Tartu Atherosclerosis Reverse Network Engineering Task). We integrated the female GRNs with single-cell RNA-sequencing data of the human atherosclerotic plaque and single-cell RNA sequencing of advanced atherosclerotic lesions from wild type and Klf4 knockout atherosclerotic smooth muscle cell (SMC) lineage-tracing mice. RESULTS: By comparing sex-specific GRNs, we observed clear sex differences in network activity within the atherosclerotic tissues. Genes more active in women were associated with mesenchymal cells and endothelial cells, whereas genes more active in men were associated with the immune system. We determined that key drivers of GRNs active in female coronary artery disease were predominantly found in (SMCs by single-cell sequencing of the human atherosclerotic plaques, and higher expressed in female plaque SMCs, as well. To study the functions of these female SMC key drivers in atherosclerosis, we examined single-cell RNA sequencing of advanced atherosclerotic lesions from wild type and Klf4 knockout atherosclerotic SMC lineage-tracing mice. The female key drivers were found to be expressed by phenotypically modulated SMCs and affected by Klf4, suggesting that sex differences in atherosclerosis involve phenotypic switching of plaque SMCs. CONCLUSIONS: Our systems approach provides novel insights into molecular mechanisms that underlie sex differences in atherosclerosis. To discover sex-specific therapeutic targets for atherosclerosis, an increased emphasis on sex-stratified approaches in the analysis of multi-omics data sets is warranted.


Asunto(s)
Aterosclerosis/genética , Redes Reguladoras de Genes/genética , Miocitos del Músculo Liso/metabolismo , Animales , Aterosclerosis/fisiopatología , Diferenciación Celular , Femenino , Humanos , Ratones , Fenotipo
4.
Basic Res Cardiol ; 117(1): 6, 2022 02 17.
Artículo en Inglés | MEDLINE | ID: mdl-35175464

RESUMEN

The majority of risk loci identified by genome-wide association studies (GWAS) are in non-coding regions, hampering their functional interpretation. Instead, transcriptome-wide association studies (TWAS) identify gene-trait associations, which can be used to prioritize candidate genes in disease-relevant tissue(s). Here, we aimed to systematically identify susceptibility genes for coronary artery disease (CAD) by TWAS. We trained prediction models of nine CAD-relevant tissues using EpiXcan based on two genetics-of-gene-expression panels, the Stockholm-Tartu Atherosclerosis Reverse Network Engineering Task (STARNET) and the Genotype-Tissue Expression (GTEx). Based on these prediction models, we imputed gene expression of respective tissues from individual-level genotype data on 37,997 CAD cases and 42,854 controls for the subsequent gene-trait association analysis. Transcriptome-wide significant association (i.e. P < 3.85e-6) was observed for 114 genes. Of these, 96 resided within previously identified GWAS risk loci and 18 were novel. Stepwise analyses were performed to study their plausibility, biological function, and pathogenicity in CAD, including analyses for colocalization, damaging mutations, pathway enrichment, phenome-wide associations with human data and expression-traits correlations using mouse data. Finally, CRISPR/Cas9-based gene knockdown of two newly identified TWAS genes, RGS19 and KPTN, in a human hepatocyte cell line resulted in reduced secretion of APOB100 and lipids in the cell culture medium. Our CAD TWAS work (i) prioritized candidate causal genes at known GWAS loci, (ii) identified 18 novel genes to be associated with CAD, and iii) suggested potential tissues and pathways of action for these TWAS CAD genes.


Asunto(s)
Enfermedad de la Arteria Coronaria , Estudio de Asociación del Genoma Completo , Animales , Enfermedad de la Arteria Coronaria/genética , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo/métodos , Ratones , Polimorfismo de Nucleótido Simple , Transcriptoma
5.
PLoS Genet ; 14(11): e1007755, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30444878

RESUMEN

Recent genome-wide association studies (GWAS) have identified multiple new loci which appear to alter coronary artery disease (CAD) risk via arterial wall-specific mechanisms. One of the annotated genes encodes LMOD1 (Leiomodin 1), a member of the actin filament nucleator family that is highly enriched in smooth muscle-containing tissues such as the artery wall. However, it is still unknown whether LMOD1 is the causal gene at this locus and also how the associated variants alter LMOD1 expression/function and CAD risk. Using epigenomic profiling we recently identified a non-coding regulatory variant, rs34091558, which is in tight linkage disequilibrium (LD) with the lead CAD GWAS variant, rs2820315. Herein we demonstrate through expression quantitative trait loci (eQTL) and statistical fine-mapping in GTEx, STARNET, and human coronary artery smooth muscle cell (HCASMC) datasets, rs34091558 is the top regulatory variant for LMOD1 in vascular tissues. Position weight matrix (PWM) analyses identify the protective allele rs34091558-TA to form a conserved Forkhead box O3 (FOXO3) binding motif, which is disrupted by the risk allele rs34091558-A. FOXO3 chromatin immunoprecipitation and reporter assays show reduced FOXO3 binding and LMOD1 transcriptional activity by the risk allele, consistent with effects of FOXO3 downregulation on LMOD1. LMOD1 knockdown results in increased proliferation and migration and decreased cell contraction in HCASMC, and immunostaining in atherosclerotic lesions in the SMC lineage tracing reporter mouse support a key role for LMOD1 in maintaining the differentiated SMC phenotype. These results provide compelling functional evidence that genetic variation is associated with dysregulated LMOD1 expression/function in SMCs, together contributing to the heritable risk for CAD.


Asunto(s)
Autoantígenos/genética , Enfermedad de la Arteria Coronaria/genética , Proteínas del Citoesqueleto/genética , Miocitos del Músculo Liso/metabolismo , Alelos , Animales , Autoantígenos/metabolismo , Becaplermina/metabolismo , Sitios de Unión/genética , Células Cultivadas , Mapeo Cromosómico , Enfermedad de la Arteria Coronaria/etiología , Enfermedad de la Arteria Coronaria/metabolismo , Vasos Coronarios/metabolismo , Proteínas del Citoesqueleto/antagonistas & inhibidores , Proteínas del Citoesqueleto/deficiencia , Proteínas del Citoesqueleto/metabolismo , Modelos Animales de Enfermedad , Proteína Forkhead Box O3/metabolismo , Técnicas de Silenciamiento del Gen , Estudio de Asociación del Genoma Completo , Humanos , Desequilibrio de Ligamiento , Masculino , Ratones , Ratones Transgénicos , Modelos Cardiovasculares , Proteínas Musculares/deficiencia , Proteínas Musculares/genética , Unión Proteica , Sitios de Carácter Cuantitativo , Factores de Riesgo
6.
PLoS Comput Biol ; 14(1): e1005911, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29293502

RESUMEN

Integrating data from multiple regulatory layers across cancer types could elucidate additional mechanisms of oncogenesis. Using antibody-based protein profiling of 736 cancer cell lines, along with matching transcriptomic data, we show that pan-cancer bimodality in the amounts of mRNA, protein, and protein phosphorylation reveals mechanisms related to the epithelial-mesenchymal transition (EMT). Based on the bimodal expression of E-cadherin, we define an EMT signature consisting of 239 genes, many of which were not previously associated with EMT. By querying gene expression signatures collected from cancer cell lines after small-molecule perturbations, we identify enrichment for histone deacetylase (HDAC) inhibitors as inducers of EMT, and kinase inhibitors as mesenchymal-to-epithelial transition (MET) promoters. Causal modeling of protein-based signaling identifies putative drivers of EMT. In conclusion, integrative analysis of pan-cancer proteomic and transcriptomic data reveals key regulatory mechanisms of oncogenic transformation.


Asunto(s)
Transición Epitelial-Mesenquimal/genética , Neoplasias/genética , Neoplasias/metabolismo , Antígenos CD , Cadherinas/genética , Cadherinas/metabolismo , Carcinogénesis , Línea Celular Tumoral , Biología Computacional , Transición Epitelial-Mesenquimal/efectos de los fármacos , Inhibidores de Histona Desacetilasas/farmacología , Humanos , Modelos Genéticos , Modelos Estadísticos , Neoplasias/patología , Fosforilación , Análisis por Matrices de Proteínas/estadística & datos numéricos , Inhibidores de Proteínas Quinasas/farmacología , Proteómica , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN Neoplásico/genética , ARN Neoplásico/metabolismo , Transcriptoma
7.
Arterioscler Thromb Vasc Biol ; 38(8): 1711-1722, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29794114

RESUMEN

Objective- A large number of genetic loci have been associated with risk of coronary artery disease (CAD) through genome-wide association studies, however, for most loci the underlying biological mechanism is unknown. Determining the molecular pathways and cellular processes affected by these loci will provide new insights into CAD pathophysiology and may lead to new therapies. The CAD-associated variants at 10p11.23 fall in JCAD, which encodes an endothelial junction protein, however, its molecular function in endothelial cells is not known. In this study, we characterize the molecular role of JCAD (junctional cadherin 5 associated) in endothelial cells. Approach and Results- We show that JCAD knockdown in endothelial cells affects key phenotypes related to atherosclerosis including proliferation, migration, apoptosis, tube formation, and monocyte binding. We demonstrate that JCAD interacts with LATS2 (large tumor suppressor kinase 2) and negatively regulates Hippo signaling leading to increased activity of YAP (yes-associated protein), the transcriptional effector of the pathway. We also show by double siRNA knockdown that the phenotypes caused by JCAD knockdown require LATS2 and that JCAD is involved in transmission of RhoA-mediated signals into the Hippo pathway. In human tissues, we find that the CAD-associated lead variant, rs2487928, is associated with expression of JCAD in arteries, including atherosclerotic arteries. Gene co-expression analyses across disease-relevant tissues corroborate our phenotypic findings and support the link between JCAD and Hippo signaling. Conclusions- Our results show that JCAD negatively regulates Hippo signaling in endothelial cells and we suggest that JCAD contributes to atherosclerosis by mediating YAP activity and contributing to endothelial dysfunction.


Asunto(s)
Moléculas de Adhesión Celular/metabolismo , Enfermedad de la Arteria Coronaria/metabolismo , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Neovascularización Fisiológica , Proteínas Serina-Treonina Quinasas/metabolismo , Transducción de Señal , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Apoptosis , Adhesión Celular , Moléculas de Adhesión Celular/genética , Movimiento Celular , Proliferación Celular , Técnicas de Cocultivo , Enfermedad de la Arteria Coronaria/genética , Enfermedad de la Arteria Coronaria/patología , Células HEK293 , Vía de Señalización Hippo , Células Endoteliales de la Vena Umbilical Humana/patología , Humanos , Monocitos/metabolismo , Fenotipo , Fosfoproteínas/metabolismo , Polimorfismo de Nucleótido Simple , Proteínas Serina-Treonina Quinasas/genética , Células THP-1 , Factores de Transcripción , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/metabolismo , Proteínas Señalizadoras YAP , Proteína de Unión al GTP rhoA/metabolismo
8.
J Mol Cell Cardiol ; 119: 147-154, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29752948

RESUMEN

Dilated cardiomyopathy (DCM) can be caused by mutations in the cardiac protein phospholamban (PLN). We used CRISPR/Cas9 to insert the R9C PLN mutation at its endogenous locus into a human induced pluripotent stem cell (hiPSC) line from an individual with no cardiovascular disease. R9C PLN hiPSC-CMs display a blunted ß-agonist response and defective calcium handling. In 3D human engineered cardiac tissues (hECTs), a blunted lusitropic response to ß-adrenergic stimulation was observed with R9C PLN. hiPSC-CMs harboring the R9C PLN mutation showed activation of a hypertrophic phenotype, as evidenced by expression of hypertrophic markers and increased cell size and capacitance of cardiomyocytes. RNA-seq suggests that R9C PLN results in an altered metabolic state and profibrotic signaling, which was confirmed by gene expression analysis and picrosirius staining of R9C PLN hECTs. The expression of several miRNAs involved in fibrosis, hypertrophy, and cardiac metabolism were also perturbed in R9C PLN hiPSC-CMs. This study contributes to better understanding of the pathogenic mechanisms of the hereditary R9C PLN mutation in the context of human cardiomyocytes.


Asunto(s)
Proteínas de Unión al Calcio/genética , Proteínas de Unión al Calcio/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Transcriptoma , Agonistas Adrenérgicos beta/metabolismo , Análisis de Varianza , Secuencia de Bases , Sistemas CRISPR-Cas/genética , Calcio/metabolismo , Cardiomiopatía Dilatada/patología , Aumento de la Célula , Línea Celular , Tamaño de la Célula , Fibrosis , Edición Génica , Humanos , MicroARNs/metabolismo , Mutación , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/genética , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/metabolismo , Ingeniería de Tejidos , Transfección
9.
Nucleic Acids Res ; 44(W1): W90-7, 2016 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-27141961

RESUMEN

Enrichment analysis is a popular method for analyzing gene sets generated by genome-wide experiments. Here we present a significant update to one of the tools in this domain called Enrichr. Enrichr currently contains a large collection of diverse gene set libraries available for analysis and download. In total, Enrichr currently contains 180 184 annotated gene sets from 102 gene set libraries. New features have been added to Enrichr including the ability to submit fuzzy sets, upload BED files, improved application programming interface and visualization of the results as clustergrams. Overall, Enrichr is a comprehensive resource for curated gene sets and a search engine that accumulates biological knowledge for further biological discoveries. Enrichr is freely available at: http://amp.pharm.mssm.edu/Enrichr.


Asunto(s)
Biología Computacional/métodos , Biblioteca de Genes , Ontología de Genes , Interfaz Usuario-Computador , Benchmarking , Biología Computacional/estadística & datos numéricos , Bases de Datos Genéticas , Perfilación de la Expresión Génica , Genoma Humano , Humanos , Internet , Anotación de Secuencia Molecular
11.
J Biomed Inform ; 71: 49-57, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28501646

RESUMEN

The volume and diversity of data in biomedical research have been rapidly increasing in recent years. While such data hold significant promise for accelerating discovery, their use entails many challenges including: the need for adequate computational infrastructure, secure processes for data sharing and access, tools that allow researchers to find and integrate diverse datasets, and standardized methods of analysis. These are just some elements of a complex ecosystem that needs to be built to support the rapid accumulation of these data. The NIH Big Data to Knowledge (BD2K) initiative aims to facilitate digitally enabled biomedical research. Within the BD2K framework, the Commons initiative is intended to establish a virtual environment that will facilitate the use, interoperability, and discoverability of shared digital objects used for research. The BD2K Commons Framework Pilots Working Group (CFPWG) was established to clarify goals and work on pilot projects that address existing gaps toward realizing the vision of the BD2K Commons. This report reviews highlights from a two-day meeting involving the BD2K CFPWG to provide insights on trends and considerations in advancing Big Data science for biomedical research in the United States.


Asunto(s)
Conjuntos de Datos como Asunto , Difusión de la Información , National Institutes of Health (U.S.) , Investigación Biomédica , Humanos , Conocimiento , Investigación Biomédica Traslacional , Estados Unidos
12.
bioRxiv ; 2023 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-37333408

RESUMEN

Mouse models have been used extensively to study human coronary artery disease (CAD) or atherosclerosis and to test therapeutic targets. However, whether mouse and human share similar genetic factors and pathogenic mechanisms of atherosclerosis has not been thoroughly investigated in a data-driven manner. We conducted a cross-species comparison study to better understand atherosclerosis pathogenesis between species by leveraging multiomics data. Specifically, we compared genetically driven and thus CAD-causal gene networks and pathways, by using human GWAS of CAD from the CARDIoGRAMplusC4D consortium and mouse GWAS of atherosclerosis from the Hybrid Mouse Diversity Panel (HMDP) followed by integration with functional multiomics human (STARNET and GTEx) and mouse (HMDP) databases. We found that mouse and human shared >75% of CAD causal pathways. Based on network topology, we then predicted key regulatory genes for both the shared pathways and species-specific pathways, which were further validated through the use of single cell data and the latest CAD GWAS. In sum, our results should serve as a much-needed guidance for which human CAD-causal pathways can or cannot be further evaluated for novel CAD therapies using mouse models.

13.
Elife ; 122023 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-38060277

RESUMEN

Mouse models have been used extensively to study human coronary artery disease (CAD) or atherosclerosis and to test therapeutic targets. However, whether mouse and human share similar genetic factors and pathogenic mechanisms of atherosclerosis has not been thoroughly investigated in a data-driven manner. We conducted a cross-species comparison study to better understand atherosclerosis pathogenesis between species by leveraging multiomics data. Specifically, we compared genetically driven and thus CAD-causal gene networks and pathways, by using human GWAS of CAD from the CARDIoGRAMplusC4D consortium and mouse GWAS of atherosclerosis from the Hybrid Mouse Diversity Panel (HMDP) followed by integration with functional multiomics human (STARNET and GTEx) and mouse (HMDP) databases. We found that mouse and human shared >75% of CAD causal pathways. Based on network topology, we then predicted key regulatory genes for both the shared pathways and species-specific pathways, which were further validated through the use of single cell data and the latest CAD GWAS. In sum, our results should serve as a much-needed guidance for which human CAD-causal pathways can or cannot be further evaluated for novel CAD therapies using mouse models.


Asunto(s)
Aterosclerosis , Enfermedad de la Arteria Coronaria , Humanos , Ratones , Animales , Enfermedad de la Arteria Coronaria/genética , Aterosclerosis/genética , Redes Reguladoras de Genes , Estudio de Asociación del Genoma Completo/métodos , Polimorfismo de Nucleótido Simple , Predisposición Genética a la Enfermedad
14.
Cell Rep ; 42(11): 113371, 2023 11 28.
Artículo en Inglés | MEDLINE | ID: mdl-37938972

RESUMEN

Senescent cells are a major contributor to age-dependent cardiovascular tissue dysfunction, but knowledge of their in vivo cell markers and tissue context is lacking. To reveal tissue-relevant senescence biology, we integrate the transcriptomes of 10 experimental senescence cell models with a 224 multi-tissue gene co-expression network based on RNA-seq data of seven tissues biopsies from ∼600 coronary artery disease (CAD) patients. We identify 56 senescence-associated modules, many enriched in CAD GWAS genes and correlated with cardiometabolic traits-which supports universality of senescence gene programs across tissues and in CAD. Cross-tissue network analyses reveal 86 candidate senescence-associated secretory phenotype (SASP) factors, including COL6A3. Experimental knockdown of COL6A3 induces transcriptional changes that overlap the majority of the experimental senescence models, with cell-cycle arrest linked to modulation of DREAM complex-targeted genes. We provide a transcriptomic resource for cellular senescence and identify candidate biomarkers, SASP factors, and potential drivers of senescence in human tissues.


Asunto(s)
Senescencia Celular , Transcriptoma , Humanos , Transcriptoma/genética , Senescencia Celular/genética , Fenotipo , Biomarcadores , Colágeno , Colágeno Tipo VI/genética
15.
Nat Cardiovasc Res ; 2(6): 550-571, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37771373

RESUMEN

The development of new immunotherapies to treat the inflammatory mechanisms that sustain atherosclerotic cardiovascular disease (ASCVD) is urgently needed. Herein, we present a path to drug repurposing to identify immunotherapies for ASCVD. The integration of time-of-flight mass cytometry and RNA sequencing identified unique inflammatory signatures in peripheral blood mononuclear cells stimulated with ASCVD plasma. By comparing these inflammatory signatures to large-scale gene expression data from the LINCS L1000 dataset, we identified drugs that could reverse this inflammatory response. Ex vivo screens, using human samples, showed that saracatinib-a phase 2a-ready SRC and ABL inhibitor-reversed the inflammatory responses induced by ASCVD plasma. In Apoe-/- mice, saracatinib reduced atherosclerosis progression by reprogramming reparative macrophages. In a rabbit model of advanced atherosclerosis, saracatinib reduced plaque inflammation measured by [18F] fluorodeoxyglucose positron emission tomography-magnetic resonance imaging. Here we show a systems immunology-driven drug repurposing with a preclinical validation strategy to aid the development of cardiovascular immunotherapies.

17.
bioRxiv ; 2023 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-37986877

RESUMEN

T cells develop from circulating precursors, which enter the thymus and migrate throughout specialised sub-compartments to support maturation and selection. This process starts already in early fetal development and is highly active until the involution of the thymus in adolescence. To map the micro-anatomical underpinnings of this process in pre- vs. post-natal states, we undertook a spatially resolved analysis and established a new quantitative morphological framework for the thymus, the Cortico-Medullary Axis. Using this axis in conjunction with the curation of a multimodal single-cell, spatial transcriptomics and high-resolution multiplex imaging atlas, we show that canonical thymocyte trajectories and thymic epithelial cells are highly organised and fully established by post-conception week 12, pinpoint TEC progenitor states, find that TEC subsets and peripheral tissue genes are associated with Hassall's Corpuscles and uncover divergence in the pace and drivers of medullary entry between CD4 vs. CD8 T cell lineages. These findings are complemented with a holistic toolkit for spatial analysis and annotation, providing a basis for a detailed understanding of T lymphocyte development.

18.
Cardiovasc Res ; 118(13): 2792-2804, 2022 10 21.
Artículo en Inglés | MEDLINE | ID: mdl-34849613

RESUMEN

AIMS: De-differentiation and activation of pro-inflammatory pathways are key transitions vascular smooth muscle cells (SMCs) make during atherogenesis. Here, we explored the upstream regulators of this 'atherogenic transition'. METHODS AND RESULTS: Genome-wide sequencing studies, including Assay for Transposase-Accessible Chromatin using sequencing and RNA-seq, were performed on cells isolated from both murine SMC-lineage-tracing models of atherosclerosis and human atherosclerotic lesions. At the bulk level, alterations in chromatin accessibility were associated with the atherogenic transitioning of lesional SMCs, especially in relation to genes that govern differentiation status and complement-dependent inflammation. Using computational biology, we observed that a transcription factor previously related to coronary artery disease, Activating transcription factor 3 (ATF3), was predicted to be an upstream regulator of genes altered during the transition. At the single-cell level, our results indicated that ATF3 is a key repressor of SMC transitioning towards the subset of cells that promote vascular inflammation by activating the complement cascade. The expression of ATF3 and complement component C3 was negatively correlated in SMCs from human atherosclerotic lesions, suggesting translational relevance. Phenome-wide association studies indicated that genetic variation that results in reduced expression of ATF3 is correlated with an increased risk for atherosclerosis, and the expression of ATF3 was significantly down-regulated in humans with advanced vascular disease. CONCLUSION: Our study indicates that the plasticity of atherosclerotic SMCs may in part be explained by dynamic changes in their chromatin architecture, which in turn may contribute to their maladaptive response to inflammation-induced stress.


Asunto(s)
Aterosclerosis , Músculo Liso Vascular , Humanos , Ratones , Animales , Músculo Liso Vascular/metabolismo , Cromatina/genética , Factor de Transcripción Activador 3/genética , Factor de Transcripción Activador 3/metabolismo , Miocitos del Músculo Liso/metabolismo , Aterosclerosis/metabolismo , Inflamación/metabolismo
19.
Nat Cardiovasc Res ; 1(12): 1174-1186, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37484062

RESUMEN

Variants in genes encoding the soluble guanylyl cyclase (sGC) in platelets are associated with coronary artery disease (CAD) risk. Here, by using histology, flow cytometry and intravital microscopy, we show that functional loss of sGC in platelets of atherosclerosis-prone Ldlr-/- mice contributes to atherosclerotic plaque formation, particularly via increasing in vivo leukocyte adhesion to atherosclerotic lesions. In vitro experiments revealed that supernatant from activated platelets lacking sGC promotes leukocyte adhesion to endothelial cells (ECs) by activating ECs. Profiling of platelet-released cytokines indicated that reduced platelet angiopoietin-1 release by sGC-depleted platelets, which was validated in isolated human platelets from carriers of GUCY1A1 risk alleles, enhances leukocyte adhesion to ECs. I mp or ta ntly, p ha rm ac ol ogical sGC stimulation increased platelet angiopoietin-1 release in vitro and reduced leukocyte recruitment and atherosclerotic plaque formation in atherosclerosis-prone Ldlr-/- mice. Therefore, pharmacological sGC stimulation might represent a potential therapeutic strategy to prevent and treat CAD.

20.
Circ Genom Precis Med ; 15(1): e003365, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34961328

RESUMEN

BACKGROUND: Hundreds of candidate genes have been associated with coronary artery disease (CAD) through genome-wide association studies. However, a systematic way to understand the causal mechanism(s) of these genes, and a means to prioritize them for further study, has been lacking. This represents a major roadblock for developing novel disease- and gene-specific therapies for patients with CAD. Recently, powerful integrative genomics analyses pipelines have emerged to identify and prioritize candidate causal genes by integrating tissue/cell-specific gene expression data with genome-wide association study data sets. METHODS: We aimed to develop a comprehensive integrative genomics analyses pipeline for CAD and to provide a prioritized list of causal CAD genes. To this end, we leveraged several complimentary informatics approaches to integrate summary statistics from CAD genome-wide association studies (from UK Biobank and CARDIoGRAMplusC4D) with transcriptomic and expression quantitative trait loci data from 9 cardiometabolic tissue/cell types in the STARNET study (Stockholm-Tartu Atherosclerosis Reverse Network Engineering Task). RESULTS: We identified 162 unique candidate causal CAD genes, which exerted their effect from between one and up to 7 disease-relevant tissues/cell types, including the arterial wall, blood, liver, skeletal muscle, adipose, foam cells, and macrophages. When their causal effect was ranked, the top candidate causal CAD genes were CDKN2B (associated with the 9p21.3 risk locus) and PHACTR1; both exerting their causal effect in the arterial wall. A majority of candidate causal genes were represented in cross-tissue gene regulatory co-expression networks that are involved with CAD, with 22/162 being key drivers in those networks. CONCLUSIONS: We identified and prioritized candidate causal CAD genes, also localizing their tissue(s) of causal effect. These results should serve as a resource and facilitate targeted studies to identify the functional impact of top causal CAD genes.


Asunto(s)
Aterosclerosis , Enfermedad de la Arteria Coronaria , Aterosclerosis/genética , Enfermedad de la Arteria Coronaria/genética , Enfermedad de la Arteria Coronaria/metabolismo , Redes Reguladoras de Genes , Estudio de Asociación del Genoma Completo/métodos , Genómica/métodos , Humanos , Sitios de Carácter Cuantitativo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA