Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
1.
Can J Microbiol ; 67(11): 813-826, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34171204

RESUMEN

Microbial communities are an important aspect of overall riverine ecology; however, appreciation of the effects of anthropogenic activities on unique riverine microbial niches, and how the collection of these samples affects the observed diversity and community profile is lacking. We analyzed prokaryotic and eukaryotic communities from surface water, biofilms, and suspended load niches along a gradient of oil sands-related contamination in the Athabasca River (Alberta, Canada), with suspended load or particle-associated communities collected either via Kenney Sampler or centrifugation manifold. At the phylum level, different niche communities were highly similar to each other and across locations. However, there were significant differences in the abundance of specific genera among the different niches and across sampling locations. A generalized linear model revealed that use of the Kenney Sampler resulted in more diverse bacterial and eukaryotic suspended load community than centrifugal collection, though suspended load communities collected by any means remained stably diverse across locations. Although there was an influence of water quality parameters on community composition, all sampled sites support diverse bacterial and eukaryotic communities regardless of the degree of contamination, highlighting the need to look beyond ecological diversity as a means of assessing ecological perturbations, and consider collecting samples from multiple niche environments.


Asunto(s)
Ríos , Contaminantes Químicos del Agua , Alberta , Monitoreo del Ambiente , Eucariontes/genética , Minería , Yacimiento de Petróleo y Gas , Contaminantes Químicos del Agua/análisis
2.
Int J Mol Sci ; 20(20)2019 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-31627387

RESUMEN

Salmonella Enteritidis is a non-typhoidal serovar of great public health significance worldwide. The RpoE sigma factor and CpxRA two-component system are the major regulators of the extracytoplasmic stress response. In this study, we found that the CpxR has highly significant, but opposite effects on the auto-aggregation and swarming motility of S. Enteritidis. Auto-aggregation was negatively affected in the ∆cpxR mutant, whereas the same mutant significantly out-performed its wild-type counterpart with respect to swarming motility, indicating that the CpxR plays a role in biofilm-associated phenotypes. Indeed, biofilm-related assays showed that the CpxR is of critical importance in biofilm development under both static (microtiter plate) and dynamic (flow cell) media flow conditions. In contrast, the RpoE sigma factor showed no significant role in biofilm development under dynamic conditions. Transcriptomic analysis revealed that the cpxR mutation negatively affected the constitutive expression of the operons critical for biosynthesis of O-antigen and adherence, but positively affected the expression of virulence genes critical for Salmonella-mediated endocytosis. Conversely, CpxR induced the expression of curli csgAB and fimbrial stdAC operons only during biofilm development and flagellar motAB and fliL operons exclusively during the planktonic phase, indicating a responsive biofilm-associated loop of the CpxR regulator.


Asunto(s)
Proteínas Bacterianas/fisiología , Biopelículas/crecimiento & desarrollo , Proteínas Fimbrias/fisiología , Antígenos O/fisiología , Salmonella enteritidis/fisiología , Factores de Virulencia/fisiología , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Proteínas Fimbrias/genética , Proteínas Fimbrias/metabolismo , Perfilación de la Expresión Génica , Antígenos O/genética , Antígenos O/metabolismo , Salmonella enteritidis/genética , Salmonella enteritidis/metabolismo , Transcriptoma
3.
Proteomics ; 18(3-4)2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29280319

RESUMEN

The emergence of multidrug resistance in bacteria has reached alarming levels. To solve this growing problem, discovery of novel cellular targets or pathways important for antimicrobial resistance is urgently needed. In this study, we explored how the alternative sigma factor, RpoE, protects Escherichia coli O157 against the toxic effects of the polycationic antimicrobial agent, chlorhexidine (CHX). Susceptibility of this organism to CHX was found to directly correlate to the growth rate, with the faster replicating wild-type being more susceptible to CHX than its more slowly replicating ΔrpoE O157 mutant. Once the wild-type and rpoE mutant strains had undergone growth arrest (entered the stationary growth phase), their resistance to CHX became entirely dependent on the functionality of RpoE. The RpoE regulon plays a critical role in maintaining the integrity of the asymmetric lipid bilayer of E. coli, thereby preventing the intracellular accumulation of CHX. Finally, using a single-cell, high-resolution, synchrotron-based approach, we discovered a subpopulation of the rpoE mutant strain with no detectable intracellular CHX, a predominant characteristic of the wild-type CHX-resistant population. This finding reveals a role of phenotypic heterogeneity in antimicrobial resistance.


Asunto(s)
Antiinfecciosos Locales/farmacología , Proteínas Bacterianas/genética , Clorhexidina/farmacología , Escherichia coli/efectos de los fármacos , Membrana Dobles de Lípidos/química , Regulón , Factor sigma/genética , Escherichia coli/crecimiento & desarrollo , Escherichia coli/metabolismo , Regulación Bacteriana de la Expresión Génica , Membrana Dobles de Lípidos/metabolismo
4.
Can J Microbiol ; 64(10): 744-760, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-29958098

RESUMEN

The efficacy of two strains of Lactobacillus probiotics (Lactobacillus rhamnosus R0011 and Lactobacillus helveticus R0052) immobilized in microcapsules composed of pea protein isolate (PPI) and alginate microcapsules was assessed using a mouse model of Citrobacter rodentium-induced colitis. Accordingly, 4-week-old mice were fed diets supplemented with freeze-dried probiotics (group P), probiotic-containing microcapsules (group PE) (lyophilized PPI-alginate microcapsules containing probiotics), or PPI-alginate microcapsules containing no probiotics (group E). Half of the mice (controls, groups P, PE, and E) received C. rodentium by gavage 2 weeks after initiation of feeding. Daily monitoring of disease symptoms (abnormal behavior, diarrhea, etc.) and body weights was undertaken. Histopathological changes in colonic and cecal tissues, cytokine expression levels, and pathogen and probiotic densities in feces were examined, and the microbial communities of the distal colon mucosa were characterized by 16S rRNA sequencing. Infection with C. rodentium led to marked progression of infectious colitis, as revealed by symptomatic and histopathological data, changes in cytokine expression, and alteration of composition of mucosal communities. Probiotics led to changes in most of the disease markers but did not have a significant impact on cytokine profiles in infected animals. On the basis of cytokine expression analyses and histopathological data, it was evident that encapsulation materials (pea protein and calcium alginate) contributed to inflammation and worsened a set of symptoms in the cecum. These results suggest that even though food ingredients may be generally recognized as safe, they may in fact contribute to the development of an inflammatory response in certain animal disease models.


Asunto(s)
Alginatos/administración & dosificación , Citrobacter rodentium , Colitis/tratamiento farmacológico , Infecciones por Enterobacteriaceae/tratamiento farmacológico , Pisum sativum , Proteínas de Plantas/administración & dosificación , Probióticos/uso terapéutico , Animales , Ciego/inmunología , Ciego/microbiología , Colitis/inmunología , Colon/inmunología , Colon/microbiología , Modelos Animales de Enfermedad , Infecciones por Enterobacteriaceae/inmunología , Femenino , Ácido Glucurónico/administración & dosificación , Ácidos Hexurónicos/administración & dosificación , Ratones , Ratones Endogámicos C57BL
5.
Food Technol Biotechnol ; 56(3): 411-420, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-30510484

RESUMEN

The effect of Lactobacillus plantarum fermentation on the functional and physicochemical properties of pea protein-enriched flour (PPF) was investigated. Over the course of the fermentation the extent of hydrolysis increased continuously until reaching a maximum degree of hydrolysis of 13.5% after 11 h. The resulting fermented flour was then adjusted to either pH=4 or 7 prior to measuring the surface and functional attributes as a function of fermentation time. At pH=4 surface charge, as measured by zeta potential, initially increased from +14 to +27 mV after 1 h of fermentation, and then decreased to +10 mV after 11 h; whereas at pH=7 the charge gradually increased from -37 to -27 mV over the entire fermentation time. Surface hydrophobicity significantly increased at pH=4 as a function of fermentation time, whereas at pH=7 fermentation induced only a slight decrease in PPF surface hydrophobicity. Foam capacity was highest at pH=4 using PPF fermented for 5 h whereas foam stability was low at both pH values for all samples. Emulsifying activity sharply decreased after 5 h of fermentation at pH=4. Emulsion stability improved at pH=7 after 5 h of fermentation as compared to the control. Oil-holding capacity improved from 1.8 g/g at time 0 to 3.5 g/g by the end of 11 h of fermentation, whereas water hydration capacity decreased after 5 h, then increased after 9 h of fermentation. These results indicate that the fermentation of PPF can modify its properties, which can lead towards its utilization as a functional food ingredient.

6.
Food Technol Biotechnol ; 56(2): 257-264, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30228800

RESUMEN

In order to determine the impact of fermentation on protein quality, pea protein concentrate (PPC) was fermented with Lactobacillus plantarum for 11 h and total phenol and tannin contents, protease inhibitor activity, amino acid composition and in vitro protein digestibility were analyzed. Phenol levels, expressed as catechin equivalents (CE), increased on dry mass basis from 2.5 at 0 h to 4.9 mg CE per 1 g of PPC at 11 h. Tannin content rose from 0.14 at 0 h to a maximum of 0.96 mg CE per 1 g of PPC after 5 h, and thereafter declined to 0.79 mg/g after 11 h. After 9 h of fermentation trypsin inhibitor activity decreased, however, at all other fermentation times similar levels to the PPC at time 0 h were produced. Chymotrypsin inhibitor activity decreased from 3.7 to 1.1 chymotrypsin inhibitory units (CIU) per mg following 11 h of fermentation. Protein digestibility reached a maximum (87.4%) after 5 h of fermentation, however, the sulfur amino acid score was reduced from 0.84 at 0 h to 0.66 at 11 h. This reduction in sulfur content altered the in vitro protein digestibility-corrected amino acid score from 67.0% at 0 h to 54.6% at 11 h. These data suggest that while fermentation is a viable method of reducing certain non-nutritive compounds in pea protein concentrate, selection of an alternative bacterium which metabolises sulfur amino acids to a lesser extent than L. plantarum should be considered.

7.
Crit Rev Microbiol ; 42(1): 83-93, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-24601836

RESUMEN

Escherichia coli O157, a foodborne pathogen of major concern for public health, has been associated with numerous outbreaks of haemorrhagic colitis and hemolytic uremic syndrome worldwide. Human infection with E. coli O157 has been primarily associated with the food-chain transmission route. This transmission route commonly elicits a multi-faceted adaptive stress response of E. coli O157 for an extended period of time prior to human infection. Several recent research articles have indicated that E. coli O157:H7 has evolved unique survival characteristics which can affect the epidemiology and ecology of this zoonotic pathogen. This review article summarizes the recent knowledge of the molecular responses of E. coli O157 to the most common stressors found within the human food chain, and further emphasizes the influence of these stressors on the epidemiology and ecology of E. coli O157.


Asunto(s)
Adaptación Biológica , Infecciones por Escherichia coli/epidemiología , Infecciones por Escherichia coli/microbiología , Escherichia coli O157/fisiología , Estrés Fisiológico , Animales , Respuesta al Choque por Frío , Infecciones por Escherichia coli/transmisión , Respuesta al Choque Térmico , Humanos , Concentración de Iones de Hidrógeno , Estrés Oxidativo
8.
Antimicrob Agents Chemother ; 59(6): 3317-28, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25801570

RESUMEN

In this study, we tested the antimicrobial activity of three metal nanoparticles (NPs), ZnO, MgO, and CaO NPs, against Salmonella enterica serovar Enteritidis in liquid medium and on solid surfaces. Out of the three tested metal NPs, ZnO NPs exhibited the most significant antimicrobial effect both in liquid medium and when embedded on solid surfaces. Therefore, we focused on revealing the mechanisms of surface-associated ZnO biocidal activity. Using the global proteome approach, we report that a great majority (79%) of the altered proteins in biofilms formed by Salmonella enterica serovar Enteritidis were downregulated, whereas a much smaller fraction (21%) of proteins were upregulated. Intriguingly, all downregulated proteins were enzymes involved in a wide range of the central metabolic pathways, including translation; amino acid biosynthetic pathways; nucleobase, nucleoside, and nucleotide biosynthetic processes; ATP synthesis-coupled proton transport; the pentose phosphate shunt; and carboxylic acid metabolic processes, indicating that ZnO NPs exert a panmetabolic toxic effect on this prokaryotic organism. In addition to their panmetabolic toxicity, ZnO NPs induced profound changes in cell envelope morphology, imposing additional necrotic effects and triggering the envelope stress response of Salmonella serovar Enteritidis. The envelope stress response effect activated periplasmic chaperones and proteases, transenvelope complexes, and regulators, thereby facilitating protection of this prokaryotic organism against ZnO NPs.


Asunto(s)
Nanopartículas del Metal/química , Salmonella enteritidis/efectos de los fármacos , Óxido de Zinc/farmacología , Animales , Biopelículas/efectos de los fármacos , Salmonelosis Animal/microbiología
9.
Antimicrob Agents Chemother ; 58(10): 5673-86, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25022584

RESUMEN

The physicochemical responses of Delftia acidovorans biofilms exposed to the commonly used antimicrobial chlorhexidine (CHX) were examined in this study. A CHX-sensitive mutant (MIC, 1.0 µg ml(-1)) was derived from a CHX-tolerant (MIC, 15.0 µg ml(-1)) D. acidovorans parent strain using transposon mutagenesis. D. acidovorans mutant (MT51) and wild-type (WT15) strain biofilms were cultivated in flow cells and then treated with CHX at sub-MIC and inhibitory concentrations and examined by confocal laser scanning microscopy (CLSM), scanning transmission X-ray microscopy (STXM), and infrared (IR) spectroscopy. Specific morphological, structural, and chemical compositional differences between the CHX-treated and -untreated biofilms of both strains were observed. Apart from architectural differences, CLSM revealed a negative effect of CHX on biofilm thickness in the CHX-sensitive MT51 biofilms relative to those of the WT15 strain. STXM analyses showed that the WT15 biofilms contained two morphochemical cell variants, whereas only one type was detected in the MT51 biofilms. The cells in the MT51 biofilms bioaccumulated CHX to a similar extent as one of the cell types found in the WT15 biofilms, whereas the other cell type in the WT15 biofilms did not bioaccumulate CHX. STXM and IR spectral analyses revealed that CHX-sensitive MT51 cells accumulated the highest levels of CHX. Pretreating biofilms with EDTA promoted the accumulation of CHX in all cells. Thus, it is suggested that a subpopulation of cells that do not accumulate CHX appear to be responsible for greater CHX resistance in D. acidovorans WT15 biofilm in conjunction with the possible involvement of bacterial membrane stability.


Asunto(s)
Antiinfecciosos/farmacología , Biopelículas/efectos de los fármacos , Clorhexidina/farmacología , Delftia acidovorans/efectos de los fármacos , Delftia acidovorans/crecimiento & desarrollo , Microscopía Confocal
10.
Appl Environ Microbiol ; 80(24): 7631-9, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25281374

RESUMEN

Lactobacillus panis PM1 has the ability to produce 1,3-propanediol (1,3-PDO) from thin stillage (TS), which is the major waste material after bioethanol production, and is therefore of significance. However, the fact that L. panis PM1 cannot use glycerol as a sole carbon source presents a considerable problem in terms of utilization of this strain in a wide range of industrial applications. Accordingly, L. panis PM1 was genetically engineered to directly utilize TS as a fermentable substrate for the production of valuable platform chemicals without the need for exogenous nutrient supplementation (e.g., sugars and nitrogen sources). An artificial glycerol-oxidative pathway, comprised of glycerol facilitator, glycerol kinase, glycerol 3-phosphate dehydrogenase, triosephosphate isomerase, and NADPH-dependent aldehyde reductase genes of Escherichia coli, was introduced into L. panis PM1 in order to directly utilize glycerol for the production of energy for growth and value-added chemicals. A pH 6.5 culture converted glycerol to mainly lactic acid (85.43 mM), whereas a significant amount of 1,3-propanediol (59.96 mM) was formed at pH 7.5. Regardless of the pH, ethanol (82.16 to 83.22 mM) was produced from TS fermentations, confirming that the artificial pathway metabolized glycerol for energy production and converted it into lactic acid or 1,3-PDO and ethanol in a pH-dependent manner. This study demonstrates the cost-effective conversion of TS to value-added chemicals by the engineered PM1 strain cultured under industrial conditions. Thus, application of this strain or these research findings can contribute to reduced costs of bioethanol production.


Asunto(s)
Etanol/metabolismo , Glicerol/metabolismo , Lactobacillus/genética , Lactobacillus/metabolismo , Glicoles de Propileno/metabolismo , Residuos/análisis , Fermentación , Ingeniería Metabólica , Oxidación-Reducción
11.
Biotechnol Lett ; 36(6): 1263-9, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24563308

RESUMEN

PURPOSE OF WORK: The regulatory role of a transcriptional regulator (PocR) in the 1,3-propanediol biosynthetic pathway of Lactobacillus panis PM1 contributes to the optimization of 1,3-propanediol production by this strain, which potentially will lead to 1,3-propanediol manufacturing efficiencies. Lactobacillus panis PM1 can utilize a 1,3-propanediol (1,3-PDO) biosynthetic pathway, consisting of diol dehydratase (PduCDE) and 1,3-PDO dehydrogenase, as a NADH recycling system, to survive under various environmental conditions. In this study, we identified a key transcriptional repressor (PocR) which was annotated as a transcriptional factor of AraC family as part of the 1,3-PDO biosynthetic pathway of L. panis PM1. The over-expression of the PocR gene resulted in the significant repression (81 %) of pduC (PduCDE large subunit) transcription, and subsequently, the decreased activity of PduCDE by 22 %. As a result of the regulation of PduCDE, production of both 3-hydroxypropionaldehyde and 1,3-PDO in the PocR over-expressing strain were significantly decreased by 40 % relative to the control strain. These results clearly demonstrate the transcriptional repressor role of PocR in the 1,3-PDO biosynthetic pathway.


Asunto(s)
Vías Biosintéticas/genética , Lactobacillus/genética , Lactobacillus/metabolismo , Glicoles de Propileno/metabolismo , Proteínas Represoras/metabolismo , ADN Bacteriano/química , ADN Bacteriano/genética , Datos de Secuencia Molecular , Proteínas Represoras/genética , Análisis de Secuencia de ADN
12.
J Ind Microbiol Biotechnol ; 41(4): 629-35, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24522935

RESUMEN

Thin stillage (TS) is a waste residue that remains after bioethanol production, and its disposal reflects the high costs of bioethanol production. Thus, the development of cost-effective ways to process TS is a pending issue in bioethanol plants. The aim of this study was to evaluate the utilization of TS for the production of the valuable chemical, 1,3-propanediol (1,3-PDO), by Lactobacillus panis PM1. Different fermentation parameters, including temperature, pH and strains [wild-type and a recombinant strain expressing a NADPH-dependent aldehyde reductase (YqhD) gene] were tested in batch and fed-batch cultivations. The highest 1,3-PDO concentration (12.85 g/L) and yield (0.84 g/g) were achieved by batch fermentation at pH-4.5/30 °C by the YqhD recombinant strain. Furthermore, pH-controlled batch fermentation reduced the total fermentation period, resulting in the maximal 1,3-PDO concentration of 16.23 g/L and yield of 0.72 g/g in TS without an expensive nutrient or nitrogen (e.g., yeast extract, beef extract, and peptone) supplementation. The addition of two trace elements, Mg(2+) and Mn(2+), in TS increased 1,3-PDO yield (0.74 g/g) without 3-hydroxypropionaldehyde production, the only intermediate of 1,3-PDO biosynthetic pathway in L. panis PM1. Our results suggest that L. panis PM1 can offer a cost-effective process that utilizes the TS to produce a value-added chemical, 1,3-PDO.


Asunto(s)
Glicerol/metabolismo , Lactobacillus/metabolismo , Glicoles de Propileno/metabolismo , Eliminación de Residuos Líquidos , Aldehído Reductasa/genética , Aldehído Reductasa/metabolismo , Biocombustibles , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Fermentación , Lactobacillus/genética , Lactobacillus/crecimiento & desarrollo , Ingeniería Metabólica , Residuos
13.
Antibiotics (Basel) ; 13(6)2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38927205

RESUMEN

Freshwater environments are primary receiving systems of wastewater and effluents, which carry low concentrations of antibiotics and antimicrobial-resistant (AMR) bacteria and genes. Aquatic microbial communities are thus exposed to environmentally relevant concentrations of antibiotics (ERCA) that presumably influence the acquisition and spread of environmental AMR. Here, we analyzed ERCA exposure with and without the additional presence of municipal wastewater treatment plant effluent (W) and swine manure run-off (M) on aquatic biofilm resistomes. Microscopic analyses revealed decreased taxonomic diversity and biofilm structural integrity, while metagenomic analysis revealed an increased abundance of resistance, virulence, and mobile element-related genes at the highest ERCA exposure levels, with less notable impacts observed when solely exposed to W or M effluents. Microbial function predictions indicated increased gene abundance associated with energy and cell membrane metabolism and heavy metal resistance under ERCA conditions. In silico predictions of increased resistance mechanisms did not correlate with observed phenotypic resistance patterns when whole communities were exposed to antimicrobial susceptibility testing. This reveals important insight into the complexity of whole-community coordination of physical and genetic responses to selective pressures. Lastly, the environmental AMR risk assessment of metagenomic data revealed a higher risk score for biofilms grown at sub-MIC antibiotic conditions.

14.
J Food Sci ; 89(6): 3412-3429, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38767939

RESUMEN

Fermentation of pulses as a clean processing technique has been reported to have a favorable impact on the functional and nutritional quality of the starting materials. Compared to commonly fermented pulses such as peas and chickpeas, limited information is available on the effect of fermentation on lentils, especially when using a high protein isolate (>80% protein) as compared to seeds or flours. Therefore, in the present work, lentil protein isolate was used as a feedstock for submerged fermentation with Aspergillus niger, Aspergillus oryzae, or Lactobacillus plantarum. After 48 h, the samples showed increased protein content with enhanced solubility and oil-holding capacity. Controlled fermentation, as opposed to spontaneous fermentation, maintained the high foaming capacity; however, all fermented samples had lower foam and emulsion stabilizing properties and reduced water-holding capacity compared to the control. The fermented proteins were also less digestible, possibly due to an increase in phenolics and saponins. New volatile compounds were identified in fermented samples that show promise for improved sensory attributes. Significant differences were observed in specific quality attributes depending on the microbial strain used. Further research is required to better understand the fermentative metabolism of microbial communities when provided high-protein lentil ingredients as growth substrates. PRACTICAL APPLICATION: Fermented lentil protein isolate has promising flavor profiles that may improve its sensory properties for food application.


Asunto(s)
Aspergillus niger , Fermentación , Lactobacillus plantarum , Lens (Planta) , Valor Nutritivo , Compuestos Orgánicos Volátiles , Lens (Planta)/microbiología , Lens (Planta)/química , Lactobacillus plantarum/metabolismo , Compuestos Orgánicos Volátiles/análisis , Compuestos Orgánicos Volátiles/metabolismo , Aspergillus niger/metabolismo , Proteínas de Plantas/metabolismo , Aspergillus oryzae/metabolismo , Semillas/química , Semillas/microbiología , Gusto , Manipulación de Alimentos/métodos
15.
J Clin Microbiol ; 51(7): 2082-8, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23616449

RESUMEN

A population-based study combining (i) antimicrobial, (ii) genetic, and (iii) virulence analyses with molecular evolutionary analyses revealed segregative characteristics distinguishing human clinical and bovine Escherichia coli O157 strains from western Canada. Human (n = 50) and bovine (n = 50) strains of E. coli O157 were collected from Saskatchewan and Manitoba in 2006 and were analyzed by using the six-marker lineage-specific polymorphism assay (LSPA6), antimicrobial susceptibility analysis, the colicin assay, plasmid and virulence profiling including the eae, ehxA, espA, iha, stx1, stx2, stx2c, stx2d, stx2d-activatable, stx2e, and stx2f virulence-associated genes, and structure analyses. Multivariate logistic regression and Fisher's exact test strongly suggested that antimicrobial susceptibility was the most distinctive characteristic (P = 0.00487) associated with human strains. Among all genetic, virulence, and antimicrobial determinants, resistance to tetracycline (P < 0.000) and to sulfisoxazole (P < 0.009) were the most strongly associated segregative characteristics of bovine E. coli O157 strains. Among 11 virulence-associated genes, stx2c showed the strongest association with E. coli O157 strains of bovine origin. LSPA6 genotyping showed the dominance of the lineage I genotype among clinical (90%) and bovine (70%) strains, indicating the importance of lineage I in O157 epidemiology and ecology. Population structure analysis revealed that the more-diverse bovine strains came from a unique group of strains characterized by a high degree of antimicrobial resistance and high frequencies of lineage II genotypes and stx2c variants. These findings imply that antimicrobial resistance generated among bovine strains of E. coli O157 has a large impact on the population of this human pathogen.


Asunto(s)
Enfermedades de los Bovinos/microbiología , Infecciones por Escherichia coli/microbiología , Infecciones por Escherichia coli/veterinaria , Escherichia coli O157/clasificación , Animales , Bovinos , Enfermedades de los Bovinos/epidemiología , Análisis por Conglomerados , Colicinas/análisis , ADN Bacteriano/genética , Infecciones por Escherichia coli/epidemiología , Escherichia coli O157/efectos de los fármacos , Escherichia coli O157/genética , Escherichia coli O157/aislamiento & purificación , Humanos , Manitoba/epidemiología , Pruebas de Sensibilidad Microbiana , Epidemiología Molecular , Tipificación Molecular , Plásmidos/análisis , Polimorfismo Genético , Saskatchewan/epidemiología , Factores de Virulencia/genética
16.
Appl Environ Microbiol ; 79(24): 7818-26, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24096428

RESUMEN

Lactobacillus panis PM1 belongs to the group III heterofermentative lactobacilli that use the 6-phosphogluconate/phosphoketolase (6-PG/PK) pathway as their central metabolic pathway and are reportedly unable to grow on fructose as a sole carbon source. We isolated a variant PM1 strain capable of sporadic growth on fructose medium and observed its distinctive characteristics of fructose metabolism. The end product pattern was different from what is expected in typical group III lactobacilli using the 6-PG/PK pathway (i.e., more lactate, less acetate, and no mannitol). In addition, in silico analysis revealed the presence of genes encoding most of critical enzymes in the Embden-Meyerhof (EM) pathway. These observations indicated that fructose was metabolized via two pathways. Fructose metabolism in the PM1 strain was influenced by the activities of two enzymes, triosephosphate isomerase (TPI) and glucose 6-phosphate isomerase (PGI). A lack of TPI resulted in the intracellular accumulation of dihydroxyacetone phosphate (DHAP) in PM1, the toxicity of which caused early growth cessation during fructose fermentation. The activity of PGI was enhanced by the presence of glyceraldehyde 3-phosphate (GAP), which allowed additional fructose to enter into the 6-PG/PK pathway to avoid toxicity by DHAP. Exogenous TPI gene expression shifted fructose metabolism from heterolactic to homolactic fermentation, indicating that TPI enabled the PM1 strain to mainly use the EM pathway for fructose fermentation. These findings clearly demonstrate that the balance in the accumulation of GAP and DHAP determines the fate of fructose metabolism and the activity of TPI plays a critical role during fructose fermentation via the EM pathway in L. panis PM1.


Asunto(s)
Fructosa/metabolismo , Regulación Bacteriana de la Expresión Génica , Lactobacillus/genética , Lactobacillus/metabolismo , Redes y Vías Metabólicas/genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Medios de Cultivo/química , Fermentación , Lactobacillus/crecimiento & desarrollo , Ingeniería Metabólica , Datos de Secuencia Molecular , Mutación , Análisis de Secuencia de ADN
17.
Appl Environ Microbiol ; 79(23): 7398-412, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24056457

RESUMEN

Sediments from the Athabasca River and its tributaries naturally contain bitumen at various concentrations, but the impacts of this variation on the ecology of the river are unknown. Here, we used controlled rotating biofilm reactors in which we recirculated diluted sediments containing various concentrations of bituminous compounds taken from the Athabasca River and three tributaries. Biofilms exposed to sediments having low and high concentrations of bituminous compounds were compared. The latter were 29% thinner, had a different extracellular polysaccharide composition, 67% less bacterial biomass per µm2, 68% less cyanobacterial biomass per µm2, 64% less algal biomass per µm2, 13% fewer protozoa per cm2, were 21% less productive, and had a 33% reduced content in chlorophyll a per mm2 and a 20% reduction in the expression of photosynthetic genes, but they had a 23% increase in the expression of aromatic hydrocarbon degradation genes. Within the Bacteria, differences in community composition were also observed, with relatively more Alphaproteobacteria and Betaproteobacteria and less Cyanobacteria, Bacteroidetes, and Firmicutes in biofilms exposed to high concentrations of bituminous compounds. Altogether, our results suggest that biofilms that develop in the presence of higher concentrations of bituminous compounds are less productive and have lower biomass, linked to a decrease in the activities and abundance of photosynthetic organisms likely due to inhibitory effects. However, within this general inhibition, some specific microbial taxa and functional genes are stimulated because they are less sensitive to the inhibitory effects of bituminous compounds or can degrade and utilize some bitumen-associated compounds.


Asunto(s)
Biopelículas/efectos de los fármacos , Biota/efectos de los fármacos , Células Eucariotas/efectos de los fármacos , Hidrocarburos/toxicidad , Células Procariotas/efectos de los fármacos , Ríos/microbiología , Ríos/parasitología
18.
Appl Microbiol Biotechnol ; 97(19): 8693-703, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23912115

RESUMEN

Lactobacillus panis PM1 belongs to the group III heterofermentative lactobacilli and can utilize various NADH-reoxidizing routes (e.g., citrate, glycerol, and oxygen) according to environmental conditions. In this study, we investigated the ability of L. panis PM1 to produce succinate, acetate, and lactate via citrate utilization. Possible pathways, as well as regulation, for citrate metabolism were examined on the basis of the genome sequence data and metabolic profiles of L. panis PM1. The presence of citrate led to the up-regulation, at the transcriptional level, of the genes encoding for citrate lyase, malate dehydrogenase, and malic enzyme of the citrate pathways by 10- to 120-fold. The transcriptional regulator of the dha operon coding for glycerol dehydratase of L. panis PM1 repressed the expression of the citrate lyase gene (10-fold). Metabolite analyses indicated that the transcriptional enhancement by citrate stimulated succinate yield. Citrate metabolism contributed to energy production by providing a major alternate pathway for NAD(+) regeneration and allowed acetyl phosphate to yield acetate/ATP instead of ethanol/NAD(+). Additionally, a branching pathway from oxaloacetate to pyruvate increased the pool of lactate, which was then used to produce ATP during stationary phase. However, the redirection of NADH-to-citrate utilization resulted in stress caused by end-products (i.e., succinate and acetate). This stress reduced succinate production by up to 50 % but did not cause significant changes at transcriptional level. Overall, citrate utilization was beneficial for the growth of L. panis PM1 by providing a NAD(+) regeneration route and producing extra ATP.


Asunto(s)
Adenosina Trifosfato/metabolismo , Ácido Cítrico/metabolismo , Metabolismo Energético , Regulación Bacteriana de la Expresión Génica , Lactobacillus/genética , Lactobacillus/metabolismo , NAD/metabolismo , Acetatos/metabolismo , ADN Bacteriano/química , ADN Bacteriano/genética , Enzimas/metabolismo , Ácido Láctico/metabolismo , Lactobacillus/crecimiento & desarrollo , Datos de Secuencia Molecular , Oxidación-Reducción , Análisis de Secuencia de ADN , Ácido Succínico/metabolismo
19.
Appl Microbiol Biotechnol ; 97(1): 417-28, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23076589

RESUMEN

Conversion of glycerol to 1,3-propanediol (1,3-PDO) is an attractive option to increase the economic efficiency of the biofuel industry. A bacterial strain that produced 1,3-PDO in the presence of glycerol was isolated from thin stillage, the fermentation residue of bioethanol production. This 1,3-PDO-producing organism was identified as Lactobacillus panis through biochemical characteristics and by 16S rRNA sequencing. Characterization of the L. panis strain hereafter designated as PM1 revealed it was an aerotolerant acidophilic anaerobe able to grow over a wide range of temperatures; tolerant to high concentrations of sodium chloride, ethanol, acetic acid, and lactic acid; and resistant to many common antibiotics. L. panis PM1 could utilize glucose, lactose, galactose, maltose, xylose, and arabinose, but could not grow on sucrose or fructose. Production of 1,3-PDO by L. panis PM1 occurred only when glucose was available as the carbon source in the absence of oxygen. These metabolic characteristics strongly suggested NADH recycling for glucose metabolism is achieved through 1,3-PDO production by this strain. These characteristics classified L. panis PM1 within the group III heterofermentative lactic acid bacteria, which includes the well-characterized 1,3-PDO-producing strain, Lactobacillus reuteri. Metabolite production profiles showed that L. panis PM1 produced considerable amounts of succinic acid (~11-12 mM) from normal MRS medium, which distinguishes this strain from L. reuteri strains.


Asunto(s)
Lactobacillus/clasificación , Lactobacillus/aislamiento & purificación , Glicoles de Propileno/metabolismo , Anaerobiosis , Técnicas de Tipificación Bacteriana , Análisis por Conglomerados , ADN Bacteriano/química , ADN Bacteriano/genética , ADN Ribosómico/química , ADN Ribosómico/genética , Glucosa/metabolismo , Glicerol/metabolismo , Lactobacillus/genética , Lactobacillus/fisiología , Datos de Secuencia Molecular , Filogenia , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN
20.
Front Microbiol ; 14: 1194952, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37593545

RESUMEN

The effects of sub-minimum inhibitory concentrations (sub-MICs) of antibiotics on aquatic environments is not yet fully understood. Here, we explore these effects by employing a replicated microcosm system fed with river water where biofilm communities were continuously exposed over an eight-week period to sub-MIC exposure (1/10, 1/50, and 1/100 MIC) to a mix of common antibiotics (ciprofloxacin, streptomycin, and oxytetracycline). Biofilms were examined using a structure-function approach entailing microscopy and metagenomic techniques, revealing details on the microbiome, resistome, virulome, and functional prediction. A comparison of three commonly used microbiome and resistome databases was also performed. Differences in biofilm architecture were observed between sub-MIC antibiotic treatments, with an overall reduction of extracellular polymeric substances and autotroph (algal and cyanobacteria) and protozoan biomass, particularly at the 1/10 sub-MIC condition. While metagenomic analyses demonstrated that microbial diversity was lowest at the sub-MIC 1/10 antibiotic treatment, resistome diversity was highest at sub-MIC 1/50. This study also notes the importance of benchmarking analysis tools and careful selection of reference databases, given the disparity in detected antimicrobial resistance genes (ARGs) identity and abundance across methods. Ultimately, the most detected ARGs in sub-MICs exposed biofilms were those that conferred resistance to aminoglycosides, tetracyclines, ß-lactams, sulfonamides, and trimethoprim. Co-occurrence of microbiome and resistome features consistently showed a relationship between Proteobacteria genera and aminoglycoside ARGs. Our results support the hypothesis that constant exposure to sub-MICs antibiotics facilitate the transmission and promote prevalence of antibiotic resistance in riverine biofilms communities, and additionally shift overall microbial community metabolic function.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA