Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Cell ; 186(21): 4546-4566.e27, 2023 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-37769657

RESUMEN

Neutrophils are abundant immune cells in the circulation and frequently infiltrate tumors in substantial numbers. However, their precise functions in different cancer types remain incompletely understood, including in the brain microenvironment. We therefore investigated neutrophils in tumor tissue of glioma and brain metastasis patients, with matched peripheral blood, and herein describe the first in-depth analysis of neutrophil phenotypes and functions in these tissues. Orthogonal profiling strategies in humans and mice revealed that brain tumor-associated neutrophils (TANs) differ significantly from blood neutrophils and have a prolonged lifespan and immune-suppressive and pro-angiogenic capacity. TANs exhibit a distinct inflammatory signature, driven by a combination of soluble inflammatory mediators including tumor necrosis factor alpha (TNF-ɑ) and Ceruloplasmin, which is more pronounced in TANs from brain metastasis versus glioma. Myeloid cells, including tumor-associated macrophages, emerge at the core of this network of pro-inflammatory mediators, supporting the concept of a critical myeloid niche regulating overall immune suppression in human brain tumors.

2.
Cell ; 181(7): 1643-1660.e17, 2020 06 25.
Artículo en Inglés | MEDLINE | ID: mdl-32470396

RESUMEN

Brain malignancies encompass a range of primary and metastatic cancers, including low-grade and high-grade gliomas and brain metastases (BrMs) originating from diverse extracranial tumors. Our understanding of the brain tumor microenvironment (TME) remains limited, and it is unknown whether it is sculpted differentially by primary versus metastatic disease. We therefore comprehensively analyzed the brain TME landscape via flow cytometry, RNA sequencing, protein arrays, culture assays, and spatial tissue characterization. This revealed disease-specific enrichment of immune cells with pronounced differences in proportional abundance of tissue-resident microglia, infiltrating monocyte-derived macrophages, neutrophils, and T cells. These integrated analyses also uncovered multifaceted immune cell activation within brain malignancies entailing converging transcriptional trajectories while maintaining disease- and cell-type-specific programs. Given the interest in developing TME-targeted therapies for brain malignancies, this comprehensive resource of the immune landscape offers insights into possible strategies to overcome tumor-supporting TME properties and instead harness the TME to fight cancer.


Asunto(s)
Neoplasias Encefálicas/inmunología , Glioma/patología , Microambiente Tumoral/inmunología , Encéfalo/inmunología , Encéfalo/metabolismo , Neoplasias Encefálicas/patología , Femenino , Glioma/metabolismo , Humanos , Linfocitos Infiltrantes de Tumor/inmunología , Macrófagos/inmunología , Masculino , Microglía/metabolismo , Neutrófilos/metabolismo , Linfocitos T/metabolismo
3.
J Immunol ; 200(7): 2489-2501, 2018 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-29445007

RESUMEN

Adoptive cell transfer is an important approach for basic research and emerges as an effective treatment for various diseases, including infections and blood cancers. Direct genetic manipulation of primary immune cells opens up unprecedented research opportunities and could be applied to enhance cellular therapeutic products. In this article, we report highly efficient genome engineering in primary murine T cells using a plasmid-based RNA-guided CRISPR system. We developed a straightforward approach to ablate genes in up to 90% of cells and to introduce precisely targeted single nucleotide polymorphisms in up to 25% of the transfected primary T cells. We used gene editing-mediated allele switching to quantify homology-directed repair, systematically optimize experimental parameters, and map a native B cell epitope in primary T cells. Allele switching of a surrogate cell surface marker can be used to enrich cells, with successful simultaneous editing of a second gene of interest. Finally, we applied the approach to correct two disease-causing mutations in the Foxp3 gene. Repairing the cause of the scurfy syndrome, a 2-bp insertion in Foxp3, and repairing the clinically relevant Foxp3K276X mutation restored Foxp3 expression in primary T cells.


Asunto(s)
Linfocitos T CD4-Positivos/inmunología , Ingeniería Celular/métodos , Factores de Transcripción Forkhead/genética , Edición Génica/métodos , Plásmidos/genética , Animales , Linfocitos T CD4-Positivos/trasplante , Sistemas CRISPR-Cas/genética , Línea Celular Tumoral , Eliminación de Gen , Inmunoterapia Adoptiva/métodos , Antígenos Comunes de Leucocito/inmunología , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Polimorfismo de Nucleótido Simple/genética
4.
Immunol Rev ; 259(1): 140-58, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24712464

RESUMEN

Forkhead box protein 3 (Foxp3)(+) regulatory T (Treg) cells are critical mediators for the establishment of self-tolerance and immune homeostasis and for the control of pathology in various inflammatory responses. While Foxp3(+) Treg cells often control immune responses in secondary lymphoid tissues, they must also traffic to and persist within non-lymphoid tissues, where they integrate various environmental cues to coordinate and adapt their effector acitvities in these sites. In recent years, our group has made use of several mouse models, including the non-obese diabetic model of type 1 diabetes, to characterize the factors, which impact the homeostasis, function, and reprogramming potential of Foxp3(+) Treg cells in situ. In addition, our recent work shows that Foxp3(+) Treg cells possess distinct post-transcriptional mechanisms of gene regulation, namely mRNA translation, to modulate tissue-specific inflammatory responses. In humans, there is a pressing need for reliable markers of FOXP3(+) Treg cells and their related function in blood and tissue. Experimental progress in our group has enabled us to discover novel markers of FOXP3(+) Treg cell (dys)function and unique gene signatures that discriminate effector and Treg cells, as well as functional and dysfunctional FOXP3(+) Treg cells.


Asunto(s)
Factores de Transcripción Forkhead/metabolismo , Linfocitos T Reguladores/inmunología , Linfocitos T Reguladores/metabolismo , Animales , Biomarcadores , Diferenciación Celular/inmunología , Linaje de la Célula/genética , Movimiento Celular/inmunología , Supervivencia Celular/inmunología , Factores de Transcripción Forkhead/genética , Regulación de la Expresión Génica , Homeostasis/inmunología , Humanos , Inmunomodulación , Inflamación/genética , Inflamación/inmunología , Inflamación/metabolismo , Ratones , Fenotipo , Procesamiento Postranscripcional del ARN , Linfocitos T Reguladores/citología
5.
J Immunol ; 191(1): 200-7, 2013 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-23729441

RESUMEN

We and others have previously shown that ICOS plays an important role in inducing acute graft-versus-host disease (GVHD) in murine models of allogeneic bone marrow transplantation. ICOS potentiates TCR-mediated PI3K activation and intracellular calcium mobilization. However, ICOS signal transduction pathways involved in GVHD remain unknown. In this study, we examined the contribution of ICOS-PI3K signaling in the pathogenic potential of T cells using a knock-in mouse strain, ICOS-YF, which selectively lost the ability to activate PI3K. We found that when total T cells were used as alloreactive T cells, ICOS-YF T cells caused less severe GVHD compared with ICOS wild-type T cells, but they induced much more aggressive disease than ICOS knockout T cells. This intermediate level of pathogenic capacity of ICOS-YF T cells was correlated with similar levels of IFN-γ-producing CD8 T cells that developed in the recipients of ICOS-WT or ICOS-YF T cells. We further evaluated the role of ICOS-PI3K signaling in CD4 versus CD8 T cell compartment using GVHD models that are exclusively driven by CD4 or CD8 T cells. Remarkably, ICOS-YF CD8 T cells caused disease similar to ICOS wild-type CD8 T cells, whereas ICOS-YF CD4 T cells behaved very similarly to their ICOS knockout counterparts. Consistent with their in vivo pathogenic potential, CD8 T cells responded to ICOS ligation in vitro by PI3K-independent calcium flux, T cell activation, and proliferation. Thus, in acute GVHD in mice, CD4 T cells heavily rely on ICOS-PI3K signaling pathways; in contrast, CD8 T cells can use PI3K-independent ICOS signaling pathways, possibly through calcium.


Asunto(s)
Enfermedad Injerto contra Huésped/inmunología , Enfermedad Injerto contra Huésped/metabolismo , Proteína Coestimuladora de Linfocitos T Inducibles/fisiología , Activación de Linfocitos/inmunología , Fosfatidilinositol 3-Quinasa/fisiología , Transducción de Señal/inmunología , Subgrupos de Linfocitos T/inmunología , Enfermedad Aguda , Animales , Modelos Animales de Enfermedad , Técnicas de Sustitución del Gen , Enfermedad Injerto contra Huésped/enzimología , Proteína Coestimuladora de Linfocitos T Inducibles/deficiencia , Activación de Linfocitos/genética , Ratones , Ratones de la Cepa 129 , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Transducción de Señal/genética , Subgrupos de Linfocitos T/enzimología , Subgrupos de Linfocitos T/metabolismo
6.
J Immunol ; 188(3): 1064-74, 2012 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-22227569

RESUMEN

A progressive waning in Foxp3(+) regulatory T cell (Treg) functions is thought to provoke autoimmunity in the NOD model of type 1 diabetes (T1D). A deficiency in IL-2 is one of the main triggers for the defective function of Tregs in islets. Notably, abrogation of the ICOS pathway in NOD neonates or BDC2.5-NOD (BDC2.5) mice exacerbates T1D, suggesting an important role for this costimulatory pathway in tolerance to islet Ags. Thus, we hypothesize that ICOS selectively promotes Foxp3(+) Treg functions in BDC2.5 mice. We show that ICOS expression discriminates effector Foxp3(-) T cells from Foxp3(+) Tregs and specifically designates a dominant subset of intra-islet Tregs, endowed with an increased potential to expand, secrete IL-10, and mediate suppressive activity in vitro and in vivo. Consistently, Ab-mediated blockade or genetic deficiency of ICOS selectively abrogates Treg-mediated functions and T1D protection and exacerbates disease in BDC2.5 mice. Moreover, T1D progression in BDC2.5 mice is associated with a decline in ICOS expression in and expansion and suppression by intra-islet Foxp3(+) Tregs. We further show that the ICOS(+) Tregs, in contrast to their ICOS(-) counterparts, are more sensitive to IL-2, a critical signal for their survival and functional stability. Lastly, the temporal loss in ICOS(+) Tregs is readily corrected by IL-2 therapy or protective Il2 gene variation. Overall, ICOS is critical for the homeostasis and functional stability of Foxp3(+) Tregs in prediabetic islets and maintenance of T1D protection.


Asunto(s)
Homeostasis/inmunología , Proteína Coestimuladora de Linfocitos T Inducibles/fisiología , Islotes Pancreáticos/inmunología , Linfocitos T Reguladores/fisiología , Animales , Diabetes Mellitus Tipo 1/prevención & control , Factores de Transcripción Forkhead , Interleucina-2/uso terapéutico , Ratones , Ratones Endogámicos NOD , Estado Prediabético/inmunología
7.
Cell Rep Med ; 4(1): 100900, 2023 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-36652909

RESUMEN

Brain metastases (BrMs) are the most common form of brain tumors in adults and frequently originate from lung and breast primary cancers. BrMs are associated with high mortality, emphasizing the need for more effective therapies. Genetic profiling of primary tumors is increasingly used as part of the effort to guide targeted therapies against BrMs, and immune-based strategies for the treatment of metastatic cancer are gaining momentum. However, the tumor immune microenvironment (TIME) of BrM is extremely heterogeneous, and whether specific genetic profiles are associated with distinct immune states remains unknown. Here, we perform an extensive characterization of the immunogenomic landscape of human BrMs by combining whole-exome/whole-genome sequencing, RNA sequencing of immune cell populations, flow cytometry, immunofluorescence staining, and tissue imaging analyses. This revealed unique TIME phenotypes in genetically distinct lung- and breast-BrMs, thereby enabling the development of personalized immunotherapies tailored by the genetic makeup of the tumors.


Asunto(s)
Neoplasias Encefálicas , Neoplasias de la Mama , Melanoma , Neoplasias Cutáneas , Adulto , Humanos , Femenino , Neoplasias Encefálicas/genética , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Inmunoterapia , Microambiente Tumoral/genética
8.
Nat Cancer ; 4(6): 908-924, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37217652

RESUMEN

The immune-specialized environment of the healthy brain is tightly regulated to prevent excessive neuroinflammation. However, after cancer development, a tissue-specific conflict between brain-preserving immune suppression and tumor-directed immune activation may ensue. To interrogate potential roles of T cells in this process, we profiled these cells from individuals with primary or metastatic brain cancers via integrated analyses on the single-cell and bulk population levels. Our analysis revealed similarities and differences in T cell biology between individuals, with the most pronounced differences observed in a subgroup of individuals with brain metastasis, characterized by accumulation of CXCL13-expressing CD39+ potentially tumor-reactive T (pTRT) cells. In this subgroup, high pTRT cell abundance was comparable to that in primary lung cancer, whereas all other brain tumors had low levels, similar to primary breast cancer. These findings indicate that T cell-mediated tumor reactivity can occur in certain brain metastases and may inform stratification for treatment with immunotherapy.


Asunto(s)
Neoplasias Encefálicas , Linfocitos T , Humanos , Multiómica , Neoplasias Encefálicas/secundario , Encéfalo , Inmunoterapia
9.
iScience ; 25(11): 105372, 2022 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-36388982

RESUMEN

CD28 provides the prototypical costimulatory signal required for productive T-cell activation. Known molecular consequences of CD28 costimulation are mostly based on studies of protein signaling molecules. The microRNA cluster miR-17∼92 is induced by T cell receptor stimulation and further enhanced by combined CD28 costimulation. We demonstrate that transgenic miR-17∼92 cell-intrinsically largely overcomes defects caused by CD28 deficiency. Combining genetics, transcriptomics, bioinformatics, and biochemical miRNA:mRNA interaction maps we empirically validate miR-17∼92 target genes that include several negative regulators of T cell activation. CD28-deficient T cells exhibit derepressed miR-17∼92 target genes during activation. CRISPR/Cas9-mediated ablation of the miR-17∼92 targets Pten and Nrbp1 in naive CD28-/- CD4+ T cells differentially increases proliferation and expression of the activation markers CD25 and CD44, respectively. Thus, we propose that miR-17∼92 constitutes a central mediator for T cell activation, integrating signals by the TCR and CD28 costimulation by dampening multiple brakes that prevent T cell activation.

10.
Nat Protoc ; 16(10): 4692-4721, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34462595

RESUMEN

Human tissue samples represent an invaluable source of information for the analysis of disease-specific cellular alterations and their variation between different pathologies. In cancer research, advancing a comprehensive understanding of the unique characteristics of individual tumor types and their microenvironment is of considerable importance for clinical translation. However, investigating human brain tumor tissue is challenging due to the often-limited availability of surgical specimens. Here we describe a multimodule integrated pipeline for the processing of freshly resected human brain tumor tissue and matched blood that enables analysis of the tumor microenvironment, with a particular focus on the tumor immune microenvironment (TIME). The protocol maximizes the information yield from limited tissue and includes both the preservation of bulk tissue, which can be performed within 1 h following surgical resection, as well as tissue dissociation for an in-depth characterization of individual TIME cell populations, which typically takes several hours depending on tissue quantity and further downstream processing. We also describe integrated modules for immunofluorescent staining of sectioned tissue, bulk tissue genomic analysis and fluorescence- or magnetic-activated cell sorting of digested tissue for subsequent culture or transcriptomic analysis by RNA sequencing. Applying this pipeline, we have previously described the overall TIME landscape across different human brain malignancies, and were able to delineate disease-specific alterations of tissue-resident versus recruited macrophage populations. This protocol will enable researchers to use this pipeline to address further research questions regarding the tumor microenvironment.


Asunto(s)
Neoplasias Encefálicas , Perfilación de la Expresión Génica , Humanos , Macrófagos , Análisis de Secuencia de ARN , Microambiente Tumoral
11.
BMC Mol Biol ; 11: 10, 2010 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-20096117

RESUMEN

BACKGROUND: TFIID is a multiprotein complex that plays a pivotal role in the regulation of RNA polymerase II (Pol II) transcription owing to its core promoter recognition and co-activator functions. TAF6 is a core TFIID subunit whose splice variants include the major TAF6alpha isoform that is ubiquitously expressed, and the inducible TAF6delta. In contrast to TAF6alpha, TAF6delta is a pro-apoptotic isoform with a 10 amino acid deletion in its histone fold domain that abolishes its interaction with TAF9. TAF6delta expression can dictate life versus death decisions of human cells. RESULTS: Here we define the impact of endogenous TAF6delta expression on the global transcriptome landscape. TAF6delta was found to orchestrate a transcription profile that included statistically significant enrichment of genes of apoptotic function. Interestingly, gene expression patterns controlled by TAF6delta share similarities with, but are not equivalent to, those reported to change following TAF9 and/or TAF9b depletion. Finally, because TAF6delta regulates certain p53 target genes, we tested and demonstrated a physical and functional interaction between TAF6delta and p53. CONCLUSION: Together our data define a TAF6delta-driven apoptotic gene expression program and show crosstalk between the p53 and TAF6delta pathways.


Asunto(s)
Apoptosis , Perfilación de la Expresión Génica , Factores Asociados con la Proteína de Unión a TATA/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Células HeLa , Humanos , Ácidos Oléicos/farmacología , Regiones Promotoras Genéticas , Transducción de Señal , Succinimidas/farmacología , Factores Asociados con la Proteína de Unión a TATA/genética , Factor de Transcripción TFIID/genética , Factor de Transcripción TFIID/metabolismo
12.
J Transl Med ; 8: 113, 2010 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-21059266

RESUMEN

Peripheral immune tolerance requires a finely controlled balance between tolerance to self-antigens and protective immunity against enteric and invading pathogens. Self-reactive T cells sometimes escape thymic clonal deletion, and can subsequently provoke autoimmune diseases such as type 1 diabetes (T1D) unless they are controlled by a network of tolerance mechanisms in the periphery, including CD4+ regulatory T cells (Treg) cells. CD4+ Treg cells are characterized by the constitutive expression of the IL-2Rα chain (CD25) and preferentially express the forkhead winged helix transcriptional regulator Foxp3. These cells have been shown to possess immunosuppressive properties towards various immune cell subsets and their defects are thought to contribute to many autoimmune disorders. Strong evidence shows that IL-2 is one of the important stimulatory signals for the development, function and fitness of Treg cells. The non-obese diabetic (NOD) mouse model, a prototypic model of spontaneous autoimmunity, mimics many features of human T1 D. Using this model, the contribution of the IL-2-IL-2R pathway to the development of T1 D and other autoimmune disorders has been extensively studied. In the past years, strong genetic and molecular evidence has indicated an essential role for the IL-2/IL-2R pathway in autoimmune disorders. Thus, the major role of IL-2 is to maintain immune tolerance by promoting Treg cell development, functional fitness and stability. Here we first summarize the genetic and experimental evidence demonstrating a role for IL-2 in autoimmunity, mainly through the study of the NOD mouse model, and analyze the cellular and molecular mechanisms of its action on Treg cells. We then move on to describe how this data can be translated to applications for human autoimmune diseases by using IL-2 as a therapeutic agent to restore Treg cell fitness, numbers and functions.


Asunto(s)
Factores de Transcripción Forkhead/fisiología , Interleucina-2/metabolismo , Linfocitos T Reguladores/inmunología , Animales , Humanos , Ratones , Ratones Endogámicos NOD
13.
Immunotherapy ; 11(8): 677-689, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31088236

RESUMEN

Tumor-associated macrophages (TAMs) can be educated within the tumor microenvironment to promote cancer development and progression. While TAM-targeted agents have largely focused on macrophage depletion as an anticancer strategy, it is becoming increasingly evident that TAM re-education may represent a more effective approach. In this perspective, we discuss different means to achieve TAM re-education, and review the beneficial effects of these strategies, particularly when combined with immune checkpoint inhibitors.


Asunto(s)
Inmunoterapia , Macrófagos , Neoplasias , Microambiente Tumoral/inmunología , Animales , Humanos , Macrófagos/inmunología , Macrófagos/patología , Neoplasias/inmunología , Neoplasias/patología , Neoplasias/terapia
14.
Autoimmunity ; 50(6): 354-362, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28850267

RESUMEN

A progressive waning in Foxp3+ regulatory T (Treg) cell function provokes autoimmunity in the non-obese diabetic (NOD) mouse model of type 1 diabetes (T1D), a cellular defect rescued by prophylactic IL-2 therapy. We showed that most islet-infiltrating Treg cells express inducible T-cell co-stimulator (ICOS) in pre-diabetic NOD mice, and that ICOS+ Treg cells display enhanced fitness and suppressive function in situ. Moreover, T1D progression is associated with decreased expansion and suppressive activity of ICOS+Foxp3+ Treg cells, in islets, an observation consistent with the exacerbated T1D seen in NOD.BDC2.5 mice in which the ICOS pathway is abrogated. Here, we show that a large proportion of islet-resident Treg cells express the KLRG1 marker of terminally differentiation, in contrast to islet-infiltrating ICOS- Treg or Teff cells. We hypothesized that KLRG1 expression designates a subpopulation of ICOS+ Treg cells in islets that progressively loses function, and contributes to the immune dysregulation observed at T1D onset. Indeed, KLRG1-expressing ICOS+ Treg cells are prone to apoptosis, and have an impaired proliferative capacity and suppressive function in vitro and in vivo. T1D protective low-dose IL-2 treatment in vivo could not rescue the loss of KLRG1-expressing Treg cells in situ. While the global pool of Foxp3+ Treg cells displays some degree of functional plasticity in vivo, the KLRG1+ ICOS+ Treg cell subset is particularly susceptible to lose Foxp3 expression and reprogram into Th1- or Th17-like effector T (Teff) cells in the pancreas microenvironment. Overall, KLRG1 expression delineates a subpopulation of dysfunctional Treg cells during T1D progression in autoantigen-specific TCR transgenic NOD mice.


Asunto(s)
Diabetes Mellitus Experimental/genética , Factores de Transcripción Forkhead/genética , Islotes Pancreáticos/inmunología , Receptores Inmunológicos/genética , Linfocitos T Reguladores/inmunología , Animales , Apoptosis/genética , Apoptosis/inmunología , Autoinmunidad/efectos de los fármacos , Autoinmunidad/genética , Proliferación Celular , Diabetes Mellitus Experimental/tratamiento farmacológico , Diabetes Mellitus Experimental/inmunología , Diabetes Mellitus Experimental/patología , Diabetes Mellitus Tipo 1/tratamiento farmacológico , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 1/inmunología , Diabetes Mellitus Tipo 1/patología , Progresión de la Enfermedad , Factores de Transcripción Forkhead/inmunología , Regulación de la Expresión Génica , Humanos , Hipoglucemiantes/farmacología , Proteína Coestimuladora de Linfocitos T Inducibles/genética , Proteína Coestimuladora de Linfocitos T Inducibles/inmunología , Interleucina-2/farmacología , Islotes Pancreáticos/efectos de los fármacos , Islotes Pancreáticos/patología , Lectinas Tipo C , Ratones , Ratones Endogámicos NOD , Receptores Inmunológicos/inmunología , Transducción de Señal , Linfocitos T Reguladores/efectos de los fármacos , Linfocitos T Reguladores/patología
15.
PLoS One ; 10(5): e0126311, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25946021

RESUMEN

Type 1 diabetes (T1D) occurs through a breakdown of self-tolerance resulting in the autoimmune destruction of the insulin producing ß-islets of the pancreas. A numerical and functional waning of CD4+ Foxp3+ regulatory T (Treg) cells, prompted by a pancreatic IL-2 deficiency, accompanies Th1 autoimmunity and T1D progression in non-obese diabetic (NOD) mice. Recently, we identified a dominant subset of intra-islet Treg cells that expresses the ICOS costimulatory receptor and promotes self-tolerance delaying the onset of T1D. ICOS co-stimulation potently enhances IL-2 induced survival and proliferation, and suppressive activity of Treg cells in situ. Here, we propose an ICOS-dependent mechanism of Treg cell homing to the ß-islets during pre-diabetes in the NOD model via upregulation of the CXCR3 chemokine receptor. The islet-specific ICOS+ Treg cell subset preferentially expresses CXCR3 in the pancreatic lymph nodes (pLN) in response to Teff cell-mediated pancreatic inflammation, an expression correlating with the onset and magnitude of IFN-γ production by Teff cells in pancreatic sites. We also reveal that intra-pancreatic APC populations and insulin-producing ß, but not α nor δ, islet cells secrete the CXCR3 chemokines, CXCL9, 10 and 11, and selectively promote ICOS+ CXCR3+ Treg cell chemotaxis in vitro. Strikingly, islet-derived Treg cells also produce these chemokines suggesting an auto-regulation of homing by this subset. Unlike ICOS- cells, ICOS+ Treg cells adopt a Th1-like Treg phenotype while maintaining their suppressive capacity, characterized by expression of T-bet and CXCR3 and production of IFN-γ in the draining pLNs. Finally, in vivo neutralization of IFN-γ blocked Treg cell CXCR3 upregulation evincing its role in regulating expression of this chemokine receptor by Treg cells. Thus, CXCR3-mediated trafficking of Treg cells could represent a mechanism of homeostatic immunoregulation during diabetogeneesis.


Asunto(s)
Diabetes Mellitus Tipo 1/inmunología , Proteína Coestimuladora de Linfocitos T Inducibles/metabolismo , Receptores CXCR3/biosíntesis , Linfocitos T Reguladores/inmunología , Células TH1/inmunología , Traslado Adoptivo , Animales , Autoinmunidad/inmunología , Movimiento Celular/inmunología , Quimiocina CXCL10/metabolismo , Quimiocina CXCL11/metabolismo , Quimiocina CXCL9/metabolismo , Células Secretoras de Insulina/inmunología , Interferón gamma/biosíntesis , Interferón gamma/inmunología , Interleucina-2/deficiencia , Interleucina-2/inmunología , Ratones , Ratones Endogámicos NOD , Ratones Transgénicos , Estado Prediabético/inmunología , Linfocitos T Reguladores/trasplante , Células TH1/trasplante
16.
Artículo en Inglés | MEDLINE | ID: mdl-23805128

RESUMEN

There is increasing evidence that dysregulated immune responses play key roles in the pathogenesis and complications of type 1 but also type 2 diabetes. Indeed, chronic inflammation and autoimmunity, which are salient features of type 1 diabetes, are now believed to actively contribute to the pathogenesis of type 2 diabetes. The accumulation of activated innate and adaptive immune cells in various metabolic tissues results in the release of inflammatory mediators, which promote insulin resistance and ß-cell damage. Moreover, these dysregulated immune responses can also mutually influence the prevalence of both type 1 and 2 diabetes. In this review article, we discuss the central role of immune responses in the patho-physiology and complications of type 1 and 2 diabetes, and provide evidence that regulation of these responses, particularly through the action of regulatory T cells, may be a possible therapeutic avenue for the treatment of these disease and their respective complications.

17.
Autoimmunity ; 46(4): 259-68, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23256897

RESUMEN

Type 1 diabetes (T1D) results from a T cell dependent, autoimmune destruction of insulin producing beta cells in pancreatic islets of Langerhans, which results in insulin deficiency despite attempts at beta cell replacement by the emergence of newly-differentiated beta cells throughout T1D development. The origin of these cells has been difficult to assess as these are rapidly destroyed by the underlying autoimmunity. The identification of islets of Langerhans is typically assessed by either immunochemistry or immunofluorescence using antibodies directed against the different signature hormones and surface markers of various endocrine cells. However, the limited number of markers that can be used simultaneously and the uneven spatial distribution of endocrine cells within islets, limit the use of these histological analyses. To circumvent these caveats, we developed a novel approach using multi-parametric flow cytometry to assess the phenotype and function of pancreatic islet cell populations throughout T1D development. Using such strategy, we show that while beta cells undergo autoimmune destruction, insulin-producing cells arise from trans-differentiated alpha or delta cells, an outcome that was not solely the result of beta cell self-renewal. Moreover, we show that CD4(+)T cell-mediated inflammation correlates with the emergence of this insulin-producing beta cell-like cell.


Asunto(s)
Diabetes Mellitus Tipo 1/metabolismo , Islotes Pancreáticos/citología , Islotes Pancreáticos/metabolismo , Fenotipo , Animales , Linfocitos T CD4-Positivos/inmunología , Citocinas/biosíntesis , Diabetes Mellitus Tipo 1/inmunología , Modelos Animales de Enfermedad , Citometría de Flujo , Células Secretoras de Glucagón/metabolismo , Inmunofenotipificación , Inflamación/inmunología , Inflamación/metabolismo , Células Secretoras de Insulina/inmunología , Células Secretoras de Insulina/metabolismo , Islotes Pancreáticos/inmunología , Ratones , Ratones Endogámicos NOD , Células Secretoras de Somatostatina/metabolismo
18.
Front Immunol ; 3: 165, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22737152

RESUMEN

Peripheral immune tolerance requires a controlled balance between the maintenance of self-tolerance and the capacity to engage protective immune responses against pathogens. Dendritic cells (DCs) serve as sentinels of the immune system by sensing environmental and inflammatory signals, and play an essential role in the maintenance of immune tolerance. To achieve this, DC play a key role in dictating the outcome of immune responses by influencing the balance between inflammatory or Foxp3(+) regulatory T (T(reg)) cell responses. At the heart of this immunological balance is a finely regulated DC and T(reg) cell crosstalk whereby T(reg) cells modulate DC phenotype and function, and DC drive the differentiation of Foxp3(+) T(reg) cells in order to control immune responses. This review will focus on recent advances, which highlight the importance of this bidirectional DC and T(reg) cell crosstalk during the induction of tolerance and organ-specific autoimmunity. More specifically, we will discuss how T(reg) cells modulate DC function for the suppression of inflammatory responses and how DC subsets employ diverse mechanisms to drive differentiation of T(reg) cells. Finally, we will discuss the therapeutic potential of tolerogenic DCs for the induction of tolerance in autoimmune diseases.

19.
PLoS One ; 7(6): e38615, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22685592

RESUMEN

BACKGROUND: Non-obese diabetic (NOD) mice develop Sjögren's-like disease (SS-like) with loss of saliva flow and increased lymphocytic infiltrates in salivary glands (SGs). There are recent reports using multipotent mesenchymal stromal cells (MSCs) as a therapeutic strategy for autoimmune diseases due to their anti-inflammatory and immunomodulatory capabilities. This paper proposed a combined immuno- and cell-based therapy consisting of: A) an injection of complete Freund's adjuvant (CFA) to eradicate autoreactive T lymphocytes, and B) transplantations of MSCs to reselect lymphocytes. The objective of this was to test the effectiveness of CD45(-)/TER119(-) cells (MSCs) in re-establishing salivary function and in reducing the number of lymphocytic infiltrates (foci) in SGs. The second objective was to study if the mechanisms underlying a decrease in inflammation (focus score) was due to CFA, MSCs, or CFA+MSCs combined. METHODOLOGY/PRINCIPAL FINDINGS: Donor MSCs were isolated from bones of male transgenic eGFP mice. Eight week-old female NOD mice received one of the following treatments: insulin, CFA, MSC, or CFA+MSC (combined therapy). Mice were followed for 14 weeks post-therapy. CD45(-)/TER119(-) cells demonstrated characteristics of MSCs as they were positive for Sca-1, CD106, CD105, CD73, CD29, CD44, negative for CD45, TER119, CD11b, had high number of CFU-F, and differentiated into osteocytes, chondrocytes and adipocytes. Both MSC and MSC+CFA groups prevented loss of saliva flow and reduced lymphocytic infiltrations in SGs. Moreover, the influx of T and B cells decreased in all foci in MSC and MSC+CFA groups, while the frequency of Foxp3(+) (T(reg)) cell was increased. MSC-therapy alone reduced inflammation (TNF-α, TGF-ß), but the combination of MSC+CFA reduced inflammation and increased the regenerative potential of SGs (FGF-2, EGF). CONCLUSIONS/SIGNIFICANCE: The combined use of MSC+CFA was effective in both preventing saliva secretion loss and reducing lymphocytic influx in salivary glands.


Asunto(s)
Adyuvante de Freund/uso terapéutico , Linfocitos/efectos de los fármacos , Trasplante de Células Madre Mesenquimatosas , Glándulas Salivales/efectos de los fármacos , Síndrome de Sjögren/terapia , Adyuvantes Inmunológicos/administración & dosificación , Adyuvantes Inmunológicos/uso terapéutico , Animales , Antígenos CD/metabolismo , Antígenos Ly/metabolismo , Terapia Combinada , Factor de Crecimiento Epidérmico/genética , Factor de Crecimiento Epidérmico/metabolismo , Femenino , Factor 2 de Crecimiento de Fibroblastos/genética , Factor 2 de Crecimiento de Fibroblastos/metabolismo , Adyuvante de Freund/administración & dosificación , Inmunohistoquímica , Linfocitos/metabolismo , Linfocitos/patología , Masculino , Proteínas de la Membrana/metabolismo , Células Madre Mesenquimatosas/metabolismo , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Endogámicos NOD , Ratones Transgénicos , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Saliva/efectos de los fármacos , Saliva/metabolismo , Glándulas Salivales/metabolismo , Glándulas Salivales/fisiopatología , Síndrome de Sjögren/metabolismo , Síndrome de Sjögren/patología , Factor de Crecimiento Transformador alfa/genética , Factor de Crecimiento Transformador alfa/metabolismo , Resultado del Tratamiento , Factor de Necrosis Tumoral alfa/genética , Factor de Necrosis Tumoral alfa/metabolismo
20.
Autoimmun Rev ; 11(2): 104-11, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21875694

RESUMEN

Mechanisms of peripheral tolerance maintain a controlled balance between self-tolerance, protective immunity against a spectrum of non-self antigens, and suppressing pathology in various disorders. CD4(+) regulatory T cells (T(reg)) expressing the Foxp3 transcription factor dominantly control the activity and pathological consequences of a variety of effector T cell lineages in various inflammatory settings. This review will focus on recent advances on the roles of B7 family members in regulating Treg cell development, function and homeostasis during tolerance induction and organ-specific autoimmunity.


Asunto(s)
Enfermedades Autoinmunes/inmunología , Autoinmunidad , Diabetes Mellitus Tipo 1/inmunología , Factores de Transcripción Forkhead/inmunología , Tolerancia Periférica , Transducción de Señal/inmunología , Linfocitos T Reguladores/inmunología , Animales , Enfermedades Autoinmunes/metabolismo , Enfermedades Autoinmunes/patología , Antígenos CD28/inmunología , Citocinas/inmunología , Diabetes Mellitus Tipo 1/metabolismo , Diabetes Mellitus Tipo 1/patología , Factores de Transcripción Forkhead/genética , Homeostasis/inmunología , Humanos , Proteína Coestimuladora de Linfocitos T Inducibles/genética , Proteína Coestimuladora de Linfocitos T Inducibles/inmunología , Islotes Pancreáticos/inmunología , Activación de Linfocitos/inmunología , Ratones , Receptor de Muerte Celular Programada 1/genética , Receptor de Muerte Celular Programada 1/inmunología , Linfocitos T Reguladores/metabolismo , Linfocitos T Reguladores/patología , Timo/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA