RESUMEN
Surface plasmons are collective oscillations of free electrons at the interface between a conducting material and the dielectric environment. These excitations support the formation of strongly enhanced and confined electromagnetic fields. As well, they display fast dynamics lasting tens of femtoseconds and can lead to a strong nonlinear optical response at the nanoscale. Thus, they represent the perfect tool to drive and control fast optical processes, such as ultrafast optical switching, single photon emission, as well as strong coupling interactions to explore and tailor photochemical reactions. In this Virtual Issue, we gather several important papers published in Nano Letters in the past decade reporting studies on the ultrafast dynamics of surface plasmons.
RESUMEN
A wide array of systems, ranging from enzymes to synthetic catalysts, exert adaptive motifs to maximize their functionality. In a related manner, select metal-organic frameworks (MOFs) and similar systems exhibit structural modulations under stimuli such as the infiltration of guest species. Probing their responsive behavior in situ is a challenging but important step toward understanding their function and subsequently building functional systems. In this report, we investigate the dynamic behavior of an electrocatalytic Mn-porphyrin-containing MOF system (Mn-MOF). We discover, using a combination of electrochemistry and in situ probes of UV-vis absorption, resonance Raman, and infrared spectroscopy, a restructuration of this system via a reversible cleavage of the porphyrin carboxylate ligands under an applied voltage. We further show, by combining experimental data and DFT calculations, as a proof of concept, the capacity to utilize the Mn-MOF for electrochemical CO2 fixation and to spectroscopically capture the reaction intermediates in its catalytic cycle. The findings of this work and the methodology developed open opportunities in the application of MOFs as dynamic, enzyme-inspired electrocatalytic systems.
RESUMEN
Extracellular electron transfer (EET) in microorganisms is prevalent in nature and has been utilized in functional bioelectrochemical systems. EET of Geobacter sulfurreducens has been extensively studied and has been revealed to be facilitated through c-type cytochromes, which mediate charge between the electrode and G. sulfurreducens in anodic mode. However, the EET pathway of cathodic conversion of fumarate to succinate is still under debate. Here, we apply a variety of analytical methods, including electrochemistry, UV-vis absorption and resonance Raman spectroscopy, quartz crystal microbalance with dissipation, and electron microscopy, to understand the involvement of cytochromes and other possible electron-mediating species in the switching between anodic and cathodic reaction modes. By switching the applied bias for a G. sulfurreducens biofilm coupled to investigating the quantity and function of cytochromes, as well as the emergence of Fe-containing particles on the cell membrane, we provide evidence of a diminished role of cytochromes in cathodic EET. This work sheds light on the mechanisms of G. sulfurreducens biofilm growth and suggests the possible existence of a nonheme, iron-involving EET process in cathodic mode.
Asunto(s)
Proteínas Bacterianas/metabolismo , Biopelículas , Grupo Citocromo c/metabolismo , Electrones , Geobacter/fisiología , Acetatos/metabolismo , Técnicas Electroquímicas , Electrodos , Hierro/metabolismo , Oxidación-Reducción , Ácido Succínico/metabolismoRESUMEN
Enzymes are the essential catalytic components of biology and adsorbing redox-active enzymes on electrode surfaces enables the direct probing of their function. Through standard electrochemical measurements, catalytic activity, reversibility and stability, potentials of redox-active cofactors, and interfacial electron transfer rates can be readily measured. Mechanistic investigations on the high electrocatalytic rates and selectivity of enzymes may yield inspiration for the design of synthetic molecular and heterogeneous electrocatalysts. Electrochemical investigations of enzymes also aid in our understanding of their activity within their biological environment and why they evolved in their present structure and function. However, the conventional array of electrochemical techniques (e.g., voltammetry and chronoamperometry) alone offers a limited picture of the enzyme-electrode interface. How many enzymes are loaded onto an electrode? In which orientation(s) are they bound? What fraction is active, and are single or multilayers formed? Does this static picture change over time, applied voltage, or chemical environment? How does charge transfer through various intraprotein cofactors contribute to the overall performance and catalytic bias? What is the distribution of individual enzyme activities within an ensemble of active protein films? These are central questions for the understanding of the enzyme-electrode interface, and a multidisciplinary approach is required to deliver insightful answers. Complementing standard electrochemical experiments with an orthogonal set of techniques has recently allowed to provide a more complete picture of enzyme-electrode systems. Within this framework, we first discuss a brief history of achievements and challenges in enzyme electrochemistry. We subsequently describe how the aforementioned challenges can be overcome by applying advanced electrochemical techniques, quartz-crystal microbalance measurements, and spectroscopic, namely, resonance Raman and infrared, analysis. For example, rotating ring disk electrochemistry permits the simultaneous determination of reaction kinetics and quantification of generated products. In addition, recording changes in frequency and dissipation in a quartz crystal microbalance allows to shed light into enzyme loading, relative orientation, clustering, and denaturation at the electrode surface. Resonance Raman spectroscopy yields information on ligation and redox state of enzyme cofactors, whereas infrared spectroscopy provides insights into active site states and the protein secondary and tertiary structure. The development of these emerging methods for the analysis of the enzyme-electrode interface is the primary focus of this Account. We also take a critical look at the remaining gaps in our understanding and challenges lying ahead toward attaining a complete mechanistic picture of the enzyme-electrode interface.
Asunto(s)
Técnicas Electroquímicas/métodos , Enzimas Inmovilizadas/análisis , Adsorción , Dominio Catalítico , Coenzimas/química , Técnicas Electroquímicas/instrumentación , Electrodos , Enzimas Inmovilizadas/química , Oxidación-Reducción , Análisis EspectralRESUMEN
With the rising emphasis on renewable energy research, the field of electrocatalytic CO2 conversion to fuels has grown tremendously in recent years. Advances in nanomaterial synthesis and characterization have enabled researchers to screen effects of elemental composition, size, and surface chemistry on catalyst performance. However, direct links from structure and active state to catalytic function are difficult to establish. To this end, operando spectroscopic techniques, those conducted simultaneously as catalysts operate, can provide key complementary information by investigating electrocatalysis under turnover conditions. In particular, Raman and infrared spectroscopy have the potential to reveal the identity of surface-bound intermediates, catalyst active state, and possible reaction sites to supplement the insights extracted from conventional electrochemistry. Such research aims to work in tandem synthetic and catalytic efforts to guide the development of next-generation CO2 electrocatalytic systems through rational design. In this Mini Review, we examine the latest developments in the operando probing of electrochemical CO2 reduction on nanostructured electrocatalysts and detail how this research accelerates the advancement of this field.
RESUMEN
Mimicking photosynthesis in generating chemical fuels from sunlight is a promising strategy to alleviate society's demand for fossil fuels. However, this approach involves a number of challenges that must be overcome before this concept can emerge as a viable solution to society's energy demand. Particularly in artificial photosynthesis, the catalytic chemistry that converts energy in the form of electricity into carbon-based fuels and chemicals has yet to be developed. Here, we describe the foundational work and future prospects of an emerging and promising class of materials: metal- and covalent-organic frameworks (MOFs and COFs). Within this context, these porous and tuneable framework materials have achieved initial success in converting abundant feedstocks (H2 O and CO2 ) into chemicals and fuels. In this review, we first highlight key achievements in this direction. We then follow with a perspective on precisely how MOFs and COFs can perform in ways not possible with conventional molecular or heterogeneous catalysts. We conclude with a view on how spectroscopically probing MOF and COF catalysis can be used to elucidate reaction mechanisms and material dynamics throughout the course of reaction.
Asunto(s)
Metales/química , Fotosíntesis/fisiología , Dióxido de Carbono/química , Catálisis , Estructuras Metalorgánicas/metabolismo , Agua/químicaRESUMEN
The rise of inorganic-biological hybrid organisms for solar-to-chemical production has spurred mechanistic investigations into the dynamics of the biotic-abiotic interface to drive the development of next-generation systems. The model system, Moorella thermoacetica-cadmium sulfide (CdS), combines an inorganic semiconductor nanoparticle light harvester with an acetogenic bacterium to drive the photosynthetic reduction of CO2 to acetic acid with high efficiency. In this work, we report insights into this unique electrotrophic behavior and propose a charge-transfer mechanism from CdS to M. thermoacetica Transient absorption (TA) spectroscopy revealed that photoexcited electron transfer rates increase with increasing hydrogenase (H2ase) enzyme activity. On the same time scale as the TA spectroscopy, time-resolved infrared (TRIR) spectroscopy showed spectral changes in the 1,700-1,900-cm-1 spectral region. The quantum efficiency of this system for photosynthetic acetic acid generation also increased with increasing H2ase activity and shorter carrier lifetimes when averaged over the first 24 h of photosynthesis. However, within the initial 3 h of photosynthesis, the rate followed an opposite trend: The bacteria with the lowest H2ase activity photosynthesized acetic acid the fastest. These results suggest a two-pathway mechanism: a high quantum efficiency charge-transfer pathway to H2ase generating H2 as a molecular intermediate that dominates at long time scales (24 h), and a direct energy-transducing enzymatic pathway responsible for acetic acid production at short time scales (3 h). This work represents a promising platform to utilize conventional spectroscopic methodology to extract insights from more complex biotic-abiotic hybrid systems.
RESUMEN
The integration of enzymes with synthetic materials allows efficient electrocatalysis and production of solar fuels. Here, we couple formate dehydrogenase (FDH) from Desulfovibrio vulgaris Hildenborough (DvH) to metal oxides for catalytic CO2 reduction and report an in-depth study of the resulting enzyme-material interface. Protein film voltammetry (PFV) demonstrates the stable binding of FDH on metal-oxide electrodes and reveals the reversible and selective reduction of CO2 to formate. Quartz crystal microbalance (QCM) and attenuated total reflection infrared (ATR-IR) spectroscopy confirm a high binding affinity for FDH to the TiO2 surface. Adsorption of FDH on dye-sensitized TiO2 allows for visible-light-driven CO2 reduction to formate in the absence of a soluble redox mediator with a turnover frequency (TOF) of 11±1â s-1 . The strong coupling of the enzyme to the semiconductor gives rise to a new benchmark in the selective photoreduction of aqueous CO2 to formate.
Asunto(s)
Dióxido de Carbono/química , Formiato Deshidrogenasas/química , Titanio/química , Dióxido de Carbono/metabolismo , Catálisis , Electrodos , Formiato Deshidrogenasas/metabolismo , Formiatos/química , Formiatos/metabolismo , Modelos Moleculares , Estructura Molecular , Oxidación-Reducción , Procesos Fotoquímicos , Tecnicas de Microbalanza del Cristal de Cuarzo , Semiconductores , Espectrofotometría Infrarroja , Titanio/metabolismoRESUMEN
Future solar-to-chemical production will rely upon a deep understanding of the material-microorganism interface. Hybrid technologies, which combine inorganic semiconductor light harvesters with biological catalysis to transform light, air, and water into chemicals, already demonstrate a wide product scope and energy efficiencies surpassing that of natural photosynthesis. But optimization to economic competitiveness and fundamental curiosity beg for answers to two basic questions: (1) how do materials transfer energy and charge to microorganisms, and (2) how do we design for bio- and chemocompatibility between these seemingly unnatural partners? This Perspective highlights the state-of-the-art and outlines future research paths to inform the cadre of spectroscopists, electrochemists, bioinorganic chemists, material scientists, and biologists who will ultimately solve these mysteries.
Asunto(s)
Materiales Biocompatibles/química , Semiconductores/microbiología , Energía Solar , Biocatálisis , Citoprotección , Técnicas Electroquímicas/instrumentación , Electrodos , Transporte de Electrón , Diseño de Equipo , Compuestos Inorgánicos/química , Luz , Fármacos Fotosensibilizantes/química , Polímeros/química , Especies Reactivas de Oxígeno , Agua/químicaRESUMEN
Protein film photoelectrochemistry has previously been used to monitor the activity of photosystem II, the water-plastoquinone photooxidoreductase, but the mechanistic information attainable from a three-electrode setup has remained limited. Here we introduce the four-electrode rotating ring disk electrode technique for quantifying light-driven reaction kinetics and mechanistic pathways in real time at the enzyme-electrode interface. This setup allows us to study photochemical H2O oxidation in photosystem II and to gain an in-depth understanding of pathways that generate reactive oxygen species. The results show that photosystem II reacts with O2 through two main pathways that both involve a superoxide intermediate to produce H2O2. The first pathway involves the established chlorophyll triplet-mediated formation of singlet oxygen, which is followed by its reduction to superoxide at the electrode surface. The second pathway is specific for the enzyme/electrode interface: an exposed antenna chlorophyll is sufficiently close to the electrode for rapid injection of an electron to form a highly reducing chlorophyll anion, which reacts with O2 in solution to produce O2â¢-. Incomplete H2O oxidation does not significantly contribute to reactive oxygen formation in our conditions. The rotating ring disk electrode technique allows the chemical reactivity of photosystem II to be studied electrochemically and opens several avenues for future investigation.
RESUMEN
The electronic character of porphyrin active sites for electrocatalytic reduction of CO2 to CO in a two-dimensional covalent organic framework (COF) was tuned by modification of the reticular structure. Efficient charge transport along the COF backbone promotes electronic connectivity between remote functional groups and the active sites and enables the modulation of the catalytic properties of the system. A series of oriented thin films of these COFs was found to reduce CO2 to CO at low overpotential (550 mV) with high selectivity (faradaic efficiency of 87%) and at high current densities (65 mA/mg), a performance well beyond related molecular catalysts in regard to selectivity and efficiency. The catalysts are stable for more than 12 h without any loss in reactivity. X-ray absorption measurements on the cobalt L-edge for the modified COFs enable correlations between the inductive effects of the appended functionality and the electronic character of the reticulated molecular active sites.
RESUMEN
Photosynthetic biohybrid systems (PBSs) combine the strengths of inorganic materials and biological catalysts by exploiting semiconductor broadband light absorption to capture solar energy and subsequently transform it into valuable CO2-derived chemicals by taking advantage of the metabolic pathways in living organisms. In this work, we first traverse through a brief history of recent PBSs, demonstrating the modularity and diversity of possible architectures to rival and, in many cases, surpass the performance of chemistry or biology alone before envisioning the future of these hybrid systems, opportunities for improvement, and its role in sustainable living here on earth and beyond.
Asunto(s)
Fotosíntesis , Energía Solar , Dióxido de Carbono/química , Diseño de Equipo , SemiconductoresRESUMEN
Photocatalytic H2 production through water splitting represents an attractive route to generate a renewable fuel. These systems are typically limited to anaerobic conditions due to the inhibiting effects of O2 . Here, we report that sacrificial H2 evolution with CdS quantum dots does not necessarily suffer from O2 inhibition and can even be stabilised under aerobic conditions. The introduction of O2 prevents a key inactivation pathway of CdS (over-accumulation of metallic Cd and particle agglomeration) and thereby affords particles with higher stability. These findings represent a possibility to exploit the O2 reduction reaction to inhibit deactivation, rather than catalysis, offering a strategy to stabilise photocatalysts that suffer from similar degradation reactions.
RESUMEN
Raman and photoluminescence (PL) spectroscopy are used to investigate dynamic structure-function relationships in methylammonium lead iodide (MAPbI3) perovskite. The intensity of the 150 cm-1 methylammonium (MA) librational Raman mode is found to be correlated with PL intensities in microstructures of MAPbI3. Because of the strong hydrogen bond between hydrogens in MA and iodine in the PbI6 perovskite octahedra, the Raman activity of MA is very sensitive to structural distortions of the inorganic framework. The structural distortions directly influence PL intensities, which in turn have been correlated with microstructure quality. Our measurements, supported with first-principles calculations, indicate how excited-state MA librational displacements mechanistically control PL efficiency and lifetime in MAPbI3-material parameters that are likely important for efficient photovoltaic devices.
RESUMEN
Hydrogenases (H2 ases) are benchmark electrocatalysts for H2 production, both in biology and (photo)catalysis inâ vitro. We report the tailoring of a p-type Si photocathode for optimal loading and wiring of H2 ase through the introduction of a hierarchical inverse opal (IO) TiO2 interlayer. This proton-reducing Si|IO-TiO2 |H2 ase photocathode is capable of driving overall water splitting in combination with a photoanode. We demonstrate unassisted (bias-free) water splitting by wiring Si|IO-TiO2 |H2 ase to a modified BiVO4 photoanode in a photoelectrochemical (PEC) cell during several hours of irradiation. Connecting the Si|IO-TiO2 |H2 ase to a photosystemâ II (PSII) photoanode provides proof of concept for an engineered Z-scheme that replaces the non-complementary, natural light absorber photosystemâ I with a complementary abiotic silicon photocathode.
Asunto(s)
Hidrogenasas/metabolismo , Energía Solar , Agua/metabolismo , Bismuto/química , Técnicas Electroquímicas , Electrodos , Hidrógeno/metabolismo , Luz , Procesos Fotoquímicos , Complejo de Proteína del Fotosistema II/química , Complejo de Proteína del Fotosistema II/metabolismo , Tecnicas de Microbalanza del Cristal de Cuarzo , Silicio/química , Titanio/química , Vanadatos/química , Agua/químicaRESUMEN
Compositional heterogeneity in shaped, bimetallic nanocrystals offers additional variables to manoeuvre the functionality of the nanocrystal. However, understanding how to manipulate anisotropic elemental distributions in a nanocrystal is a great challenge in reaching higher tiers of nanocatalyst design. Here, we present the evolutionary trajectory of phase segregation in Pt-Ni rhombic dodecahedra. The anisotropic growth of a Pt-rich phase along the ã111ã and ã200ã directions at the initial growth stage results in Pt segregation to the 14 axes of a rhombic dodecahedron, forming a highly branched, Pt-rich tetradecapod structure embedded in a Ni-rich shell. With longer growth time, the Pt-rich phase selectively migrates outwards through the 14 axes to the 24 edges such that the rhombic dodecahedron becomes a Pt-rich frame enclosing a Ni-rich interior phase. The revealed anisotropic phase segregation and migration mechanism offers a radically different approach to fabrication of nanocatalysts with desired compositional distributions and performance.
RESUMEN
The radiation-sensitive nature of halide perovskites has hindered structural studies at the atomic scale. We overcome this obstacle by applying low dose-rate in-line holography, which combines aberration-corrected high-resolution transmission electron microscopy with exit-wave reconstruction. This technique successfully yields the genuine atomic structure of ultrathin two-dimensional CsPbBr3 halide perovskites, and a quantitative structure determination was achieved atom column by atom column using the phase information of the reconstructed exit-wave function without causing electron beam-induced sample alterations. An extraordinarily high image quality enables an unambiguous structural analysis of coexisting high-temperature and low-temperature phases of CsPbBr3 in single particles. On a broader level, our approach offers unprecedented opportunities to better understand halide perovskites at the atomic level as well as other radiation-sensitive materials.
RESUMEN
Here, we demonstrate the successful synthesis of brightly emitting colloidal cesium lead halide (CsPbX3, X = Cl, Br, I) nanowires (NWs) with uniform diameters and tunable compositions. By using highly monodisperse CsPbBr3 NWs as templates, the NW composition can be independently controlled through anion-exchange reactions. CsPbX3 alloy NWs with a wide range of alloy compositions can be achieved with well-preserved morphology and crystal structure. The NWs are highly luminescent with photoluminescence quantum yields (PLQY) ranging from 20% to 80%. The bright photoluminescence can be tuned over nearly the entire visible spectrum. The high PLQYs together with charge transport measurements exemplify the efficient alloying of the anionic sublattice in a one-dimensional CsPbX3 system. The wires increased functionality in the form of fast photoresponse rates and the low defect density suggest CsPbX3 NWs as prospective materials for optoelectronic applications.
RESUMEN
The generation of chemical fuel in the form of molecular H2 via the electrolysis of water is regarded to be a promising approach to convert incident solar power into an energy storage medium. Highly efficient and cost-effective catalysts are required to make such an approach practical on a large scale. Recently, a number of amorphous hydrogen evolution reaction (HER) catalysts have emerged that show promise in terms of scalability and reactivity, yet remain poorly understood. In this work, we utilize Raman spectroscopy and X-ray absorption spectroscopy (XAS) as a tool to elucidate the structure and function of an amorphous cobalt sulfide (CoSx) catalyst. Ex situ measurements reveal that the as-deposited CoSx catalyst is composed of small clusters in which the cobalt is surrounded by both sulfur and oxygen. Operando experiments, performed while the CoSx is catalyzing the HER, yield a molecular model in which cobalt is in an octahedral CoS2-like state where the cobalt center is predominantly surrounded by a first shell of sulfur atoms, which, in turn, are preferentially exposed to electrolyte relative to bulk CoS2. We surmise that these CoS2-like clusters form under cathodic polarization and expose a high density of catalytically active sulfur sites for the HER.
RESUMEN
A key challenge in the field of electrochemical carbon dioxide reduction is the design of catalytic materials featuring high product selectivity, stability, and a composition of earth-abundant elements. In this work, we introduce thin films of nanosized metal-organic frameworks (MOFs) as atomically defined and nanoscopic materials that function as catalysts for the efficient and selective reduction of carbon dioxide to carbon monoxide in aqueous electrolytes. Detailed examination of a cobalt-porphyrin MOF, Al2(OH)2TCPP-Co (TCPP-H2 = 4,4',4â³,4â´-(porphyrin-5,10,15,20-tetrayl)tetrabenzoate) revealed a selectivity for CO production in excess of 76% and stability over 7 h with a per-site turnover number (TON) of 1400. In situ spectroelectrochemical measurements provided insights into the cobalt oxidation state during the course of reaction and showed that the majority of catalytic centers in this MOF are redox-accessible where Co(II) is reduced to Co(I) during catalysis.