Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
1.
Cell ; 186(18): 3745-3746, 2023 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-37657414
2.
Genes Dev ; 37(7-8): 277-290, 2023 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-37055084

RESUMEN

The evolutionarily conserved cohesin complex mediates sister chromatid cohesion and facilitates mitotic chromosome condensation, DNA repair, and transcription regulation. These biological functions require cohesin's two ATPases, formed by the Smc1p and Smc3p subunits. Cohesin's ATPase activity is stimulated by the Scc2p auxiliary factor. This stimulation is inhibited by Eco1p acetylation of Smc3p at an interface with Scc2p. It was unclear how cohesin's ATPase activity is stimulated by Scc2p or how acetylation inhibits Scc2p, given that the acetylation site is distal to cohesin's ATPase active sites. Here, we identify mutations in budding yeast that suppressed the in vivo defects caused by Smc3p acetyl-mimic and acetyl-defective mutations. We provide compelling evidence that Scc2p activation of cohesin ATPase depends on an interface between Scc2p and a region of Smc1p proximal to cohesin's Smc3p ATPase active site. Furthermore, substitutions at this interface increase or decrease ATPase activity to overcome ATPase modulation by acetyl-mimic and acetyl-null mutations. Using these observations and an existing cryo-EM structure, we propose a model for regulating cohesin ATPase activity. We suggest that Scc2p binding to Smc1p causes the adjacent Smc1p residues and ATP to shift, stimulating Smc3p's ATPase. This stimulatory shift is inhibited through acetylation of the distal Scc2p-Smc3p interface.


Asunto(s)
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Adenosina Trifosfatasas/metabolismo , Acetilación , Cromátides/metabolismo , Proteínas de Ciclo Celular/metabolismo , Cohesinas
3.
Genes Dev ; 34(11-12): 819-831, 2020 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-32354834

RESUMEN

Condensin mediates chromosome condensation, which is essential for proper chromosome segregation during mitosis. Prior to anaphase of budding yeast, the ribosomal DNA (RDN) condenses to a thin loop that is distinct from the rest of the chromosomes. We provide evidence that the establishment and maintenance of this RDN condensation requires the regulation of condensin by Cdc5p (polo) kinase. We show that Cdc5p is recruited to the site of condensin binding in the RDN by cohesin, a complex related to condensin. Cdc5p and cohesin prevent condensin from misfolding the RDN into an irreversibly decondensed state. From these and other observations, we propose that the spatial regulation of Cdc5p by cohesin modulates condensin activity to ensure proper RDN folding into a thin loop. This mechanism may be evolutionarily conserved, promoting the thinly condensed constrictions that occur at centromeres and RDN of mitotic chromosomes in plants and animals.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Cromosomas Fúngicos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Adenosina Trifosfatasas/genética , Cromosomas Fúngicos/genética , Proteínas de Unión al ADN/genética , Complejos Multiproteicos/genética , Unión Proteica , Pliegue de Proteína , Proteínas Serina-Treonina Quinasas/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Cohesinas
4.
Mol Cell ; 71(4): 487-497.e3, 2018 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-30078723

RESUMEN

DNA-RNA hybrids associated with R-loops promote DNA damage and genomic instability. The capacity of hybrids at different genomic sites to cause DNA damage was not known, and the mechanisms leading from hybrid to damage were poorly understood. Here, we adopt a new strategy to map and characterize the sites of hybrid-induced damage genome-wide in budding yeast. We show that hybrid removal is essential for life because persistent hybrids cause irreparable DNA damage and cell death. We identify that a subset of hybrids is prone to cause damage, and the chromosomal context of hybrids dramatically impacts their ability to induce damage. Furthermore, persistent hybrids affect the repair pathway, generating large regions of single-stranded DNA (ssDNA) by two distinct mechanisms, likely resection and re-replication. These damaged regions may act as potential precursors to gross chromosomal rearrangements like deletions and duplications that are associated with R-loops and cancers.


Asunto(s)
ADN de Cadena Simple/genética , Regulación Fúngica de la Expresión Génica , Genoma Fúngico , Inestabilidad Genómica , ARN/genética , Saccharomyces cerevisiae/genética , División del ADN , Daño del ADN , ADN Helicasas/genética , ADN Helicasas/metabolismo , Replicación del ADN , ADN de Cadena Simple/química , ADN de Cadena Simple/metabolismo , Puntos de Control de la Fase G2 del Ciclo Celular/efectos de los fármacos , Puntos de Control de la Fase G2 del Ciclo Celular/genética , Hidroxiurea/farmacología , Ácidos Indolacéticos/farmacología , Conformación de Ácido Nucleico , Hibridación de Ácido Nucleico , ARN/química , ARN/metabolismo , ARN Helicasas/genética , ARN Helicasas/metabolismo , Proteína Recombinante y Reparadora de ADN Rad52/genética , Proteína Recombinante y Reparadora de ADN Rad52/metabolismo , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
5.
Genes Dev ; 30(11): 1327-38, 2016 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-27298336

RESUMEN

R loops form when transcripts hybridize to homologous DNA on chromosomes, yielding a DNA:RNA hybrid and a displaced DNA single strand. R loops impact the genome of many organisms, regulating chromosome stability, gene expression, and DNA repair. Understanding the parameters dictating R-loop formation in vivo has been hampered by the limited quantitative and spatial resolution of current genomic strategies for mapping R loops. We report a novel whole-genome method, S1-DRIP-seq (S1 nuclease DNA:RNA immunoprecipitation with deep sequencing), for mapping hybrid-prone regions in budding yeast Saccharomyces cerevisiae Using this methodology, we identified ∼800 hybrid-prone regions covering 8% of the genome. Given the pervasive transcription of the yeast genome, this result suggests that R-loop formation is dictated by characteristics of the DNA, RNA, and/or chromatin. We successfully identified two features highly predictive of hybrid formation: high transcription and long homopolymeric dA:dT tracts. These accounted for >60% of the hybrid regions found in the genome. We demonstrated that these two factors play a causal role in hybrid formation by genetic manipulation. Thus, the hybrid map generated by S1-DRIP-seq led to the identification of the first global genomic features causal for R-loop formation in yeast.


Asunto(s)
Expresión Génica , Genoma Fúngico/genética , Poli A/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Mapeo Cromosómico , ADN de Hongos/metabolismo , Genómica , Histonas/metabolismo , Poli A/química , Poli A/metabolismo , Conformación Proteica , ARN de Hongos/metabolismo , Endonucleasas Específicas del ADN y ARN con un Solo Filamento/metabolismo
6.
Mol Cell ; 50(5): 611-2, 2013 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-23746348

RESUMEN

Work by Sun et al. (2013) in Arabidopsis reveals an additional function for R-loops in suppressing the expression of a long noncoding RNA and sheds light on the single-stranded DNA binding protein AtNDX that promotes persistence of the R-loop.


Asunto(s)
Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Proteínas de Homeodominio/metabolismo , Proteínas de Dominio MADS/genética , ARN sin Sentido/genética , ARN Largo no Codificante/genética , ARN de Planta/genética , Transcripción Genética
7.
Proc Natl Acad Sci U S A ; 115(39): 9732-9737, 2018 09 25.
Artículo en Inglés | MEDLINE | ID: mdl-30201721

RESUMEN

Cohesin is a four-subunit ATPase in the family of structural maintenance of chromosomes (SMC). Cohesin promotes sister chromatid cohesion, chromosome condensation, DNA repair, and transcription regulation. Cohesin performs these functions as a DNA tether and potentially a DNA-based motor. At least one of its DNA binding activities involves entrapment of DNA within a lumen formed by its subunits. This activity can be reconstituted in vitro by incubating cohesin with DNA, ATP, and cohesin loader. Previously we showed that a mutant form of cohesin (DE-cohesin) possesses the ability to bind and tether DNA in vivo. Using in vitro reconstitution assays, we show that DE-cohesin can form stable complexes with DNA without ATP hydrolysis. We show that wild-type cohesin with ADP aluminum fluoride (cohesinADP/AlFx) can also form stable cohesin-DNA complexes. These results suggest that an intermediate nucleotide state of cohesin, likely cohesinADP-Pi, is capable of initially dissociating one interface between cohesin subunits to allow DNA entry into a cohesin lumen and subsequently interacting with the bound DNA to stabilize DNA entrapment. We also show that cohesinADP/AlFx binding to DNA is enhanced by cohesin loader, suggesting a function for loader other than stimulating the ATPase. Finally, we show that loader remains stably bound to cohesinADP/AlFx after DNA entrapment, potentially revealing a function for loader in tethering the second DNA substrate. These results provide important clues on how SMC complexes like cohesin can function as both DNA tethers and motors.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , ADN/metabolismo , Transportadoras de Casetes de Unión a ATP/metabolismo , Reparación del ADN , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Translocación Genética , Cohesinas
8.
Mol Cell ; 44(6): 978-88, 2011 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-22195970

RESUMEN

Genome instability, a hallmark of cancer progression, is thought to arise through DNA double strand breaks (DSBs). Studies in yeast and mammalian cells have shown that DSBs and instability can occur through RNA:DNA hybrids generated by defects in RNA elongation and splicing. We report that in yeast hybrids naturally form at many loci in wild-type cells, likely due to transcriptional errors, but are removed by two evolutionarily conserved RNase H enzymes. Mutants defective in transcriptional repression, RNA export and RNA degradation show increased hybrid formation and associated genome instability. One mutant, sin3Δ, changes the genome profile of hybrids, enhancing formation at ribosomal DNA. Hybrids likely induce damage in G1, S and G2/M as assayed by Rad52 foci. In summary, RNA:DNA hybrids are a potent source for changing genome structure. By preventing their formation and accumulation, multiple RNA biogenesis factors and RNase H act as guardians of the genome.


Asunto(s)
ADN/genética , Inestabilidad Genómica/genética , ARN/biosíntesis , ARN/genética , Ribonucleasa H/metabolismo , Ciclo Celular , Cromosomas Artificiales de Levadura/genética , Cromosomas Artificiales de Levadura/metabolismo , Histona Desacetilasas/genética , Histona Desacetilasas/metabolismo , Mutación , Hibridación de Ácido Nucleico , Proteína Recombinante y Reparadora de ADN Rad52/metabolismo , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Ribonucleasa H/genética , Ribonucleasas/genética , Ribonucleasas/metabolismo , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Transcripción Genética
9.
Proc Natl Acad Sci U S A ; 113(43): 12220-12225, 2016 10 25.
Artículo en Inglés | MEDLINE | ID: mdl-27791008

RESUMEN

DNA:RNA hybrids can lead to DNA damage and genome instability. This damage can be prevented by degradation of the RNA in the hybrid by two evolutionarily conserved enzymes, RNase H1 and H2. Indeed, RNase H-deficient cells have increased chromosomal rearrangements. However, the quantitative and spatial contributions of the individual enzymes to hybrid removal have been unclear. Additionally, RNase H2 can remove single ribonucleotides misincorporated into DNA during replication. The relative contribution of DNA:RNA hybrids and misincorporated ribonucleotides to chromosome instability also was uncertain. To address these issues, we studied the frequency and location of loss-of-heterozygosity (LOH) events on chromosome III in Saccharomyces cerevisiae strains that were defective for RNase H1, H2, or both. We showed that RNase H2 plays the major role in preventing chromosome III instability through its hybrid-removal activity. Furthermore, RNase H2 acts pervasively at many hybrids along the chromosome. In contrast, RNase H1 acts to prevent LOH within a small region of chromosome III where the instability is dependent upon two hybrid-prone sequences. This restriction of RNase H1 activity to a subset of hybrids is not the result of its constrained localization, because we found it at hybrids genome-wide. This result suggests that the genome-protection activity of RNase H1 is regulated at a step after hybrid recognition. The global function of RNase H2 and the region-specific function of RNase H1 provide insight into why these enzymes with overlapping hybrid-removal activities have been conserved throughout evolution.


Asunto(s)
Inestabilidad Cromosómica/genética , Pérdida de Heterocigocidad/genética , Ribonucleasa H/genética , Cromosomas Fúngicos/genética , Daño del ADN/genética , Replicación del ADN/genética , ADN de Hongos/genética , ARN de Hongos/genética , Ribonucleótidos/genética , Saccharomyces cerevisiae/genética
10.
Proc Natl Acad Sci U S A ; 112(19): 6122-7, 2015 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-25918381

RESUMEN

Diverse organisms capable of surviving desiccation, termed anhydrobiotes, include species from bacteria, yeast, plants, and invertebrates. However, most organisms are sensitive to desiccation, likely due to an assortment of different stresses such as protein misfolding and aggregation, hyperosmotic stress, membrane fracturing, and changes in cell volume and shape leading to an overcrowded cytoplasm and metabolic arrest. The exact stress(es) that cause lethality in desiccation-sensitive organisms and how the lethal stresses are mitigated in desiccation-tolerant organisms remain poorly understood. The presence of trehalose in anhydrobiotes has been strongly correlated with desiccation tolerance. In the yeast Saccharomyces cerevisiae, trehalose is essential for survival after long-term desiccation. Here, we establish that the elevation of intracellular trehalose in dividing yeast by its import from the media converts yeast from extreme desiccation sensitivity to a high level of desiccation tolerance. This trehalose-induced tolerance is independent of utilization of trehalose as an energy source, de novo synthesis of other stress effectors, or the metabolic effects of trehalose biosynthetic intermediates, indicating that a chemical property of trehalose is directly responsible for desiccation tolerance. Finally, we demonstrate that elevated intracellular maltose can also make dividing yeast tolerant to short-term desiccation, indicating that other disaccharides have stress effector activity. However, trehalose is much more effective than maltose at conferring tolerance to long-term desiccation. The effectiveness and sufficiency of trehalose as an antagonizer of desiccation-induced damage in yeast emphasizes its potential to confer desiccation tolerance to otherwise sensitive organisms.


Asunto(s)
Desecación , Saccharomyces cerevisiae/fisiología , Trehalosa/metabolismo , Citoplasma/metabolismo , Disacáridos/metabolismo , Gliceraldehído-3-Fosfato Deshidrogenasa (Fosforilante)/metabolismo , Maltosa/metabolismo , Proteínas de Transporte de Monosacáridos/metabolismo , Regiones Promotoras Genéticas , Proteínas de Saccharomyces cerevisiae/metabolismo , Estrés Fisiológico , Simportadores/metabolismo , Agua/fisiología
11.
PLoS Genet ; 11(3): e1005036, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25748820

RESUMEN

The Structural Maintenance of Chromosome (SMC) complex, termed cohesin, is essential for sister chromatid cohesion. Cohesin is also important for chromosome condensation, DNA repair, and gene expression. Cohesin is comprised of Scc3, Mcd1, Smc1, and Smc3. Scc3 also binds Pds5 and Wpl1, cohesin-associated proteins that regulate cohesin function, and to the Scc2/4 cohesin loader. We mutagenized SCC3 to elucidate its role in cohesin function. A 5 amino acid insertion after Scc3 residue I358, or a missense mutation of residue D373 in the adjacent stromalin conservative domain (SCD) induce inviability and defects in both cohesion and cohesin binding to chromosomes. The I358 and D373 mutants abrogate Scc3 binding to Mcd1. These results define an Scc3 region extending from I358 through the SCD required for binding Mcd1, cohesin localization to chromosomes and cohesion. Scc3 binding to the cohesin loader, Pds5 and Wpl1 are unaffected in I358 mutant and the loader still binds the cohesin core trimer (Mcd1, Smc1 and Smc3). Thus, Scc3 plays a critical role in cohesin binding to chromosomes and cohesion at a step distinct from loader binding to the cohesin trimer. We show that residues Y371 and K372 within the SCD are critical for viability and chromosome condensation but dispensable for cohesion. However, scc3 Y371A and scc3 K372A bind normally to Mcd1. These alleles also provide evidence that Scc3 has distinct mechanisms of cohesin loading to different loci. The cohesion-competence, condensation-incompetence of Y371 and K372 mutants suggests that cohesin has at least one activity required specifically for condensation.


Asunto(s)
Proteínas de Ciclo Celular/genética , Proteínas Cromosómicas no Histona/genética , Segregación Cromosómica/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Ciclo Celular/metabolismo , Núcleo Celular/genética , Cromátides/genética , Proteínas Cromosómicas no Histona/metabolismo , Cromosomas Fúngicos/genética , Reparación del ADN/genética , Mutación , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Estructura Terciaria de Proteína , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/metabolismo , Cohesinas
12.
Mol Cell ; 34(3): 311-21, 2009 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-19450529

RESUMEN

Chromosome segregation and the repair of DNA double-strand breaks (DSBs) require cohesin, the protein complex that mediates sister chromatid cohesion. Cohesion requires both a chromatin binding step and a subsequent tethering step called cohesion generation. Here we provide insight into how cohesion generation is restricted to S phase but can be activated in G2/M by a DSB in budding yeast. We show that Wpl1p inhibits cohesion in G2/M. A DSB counteracts Wpl1p and stimulates cohesion generation by first inducing the phosphorylation of the Mcd1p subunit of cohesin. This phosphorylation activates Eco1p-dependent acetylation of Mcd1p, which in turn antagonizes Wpl1p. Previous studies show that Eco1p antagonizes Wpl1p in S phase by acetylating the Smc3p subunit of cohesin. We show that Mcd1p and Smc3p acetylation antagonize Wpl1p only in their proper context. Thus, Eco1p antagonizes Wpl1p in distinct ways to modulate cohesion generation during the cell cycle and after DNA damage.


Asunto(s)
Acetiltransferasas/metabolismo , Cromátides/metabolismo , Roturas del ADN de Doble Cadena , Proteínas Nucleares/metabolismo , Fase S/fisiología , Proteínas de Saccharomyces cerevisiae/metabolismo , Acetiltransferasas/genética , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , División Celular/fisiología , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1) , Proteoglicanos Tipo Condroitín Sulfato/química , Proteoglicanos Tipo Condroitín Sulfato/genética , Proteoglicanos Tipo Condroitín Sulfato/metabolismo , Proteínas Cromosómicas no Histona/química , Proteínas Cromosómicas no Histona/genética , Proteínas Cromosómicas no Histona/metabolismo , Fase G2/fisiología , Lisina/metabolismo , Modelos Moleculares , Proteínas Nucleares/genética , Proteínas Quinasas/genética , Proteínas Quinasas/metabolismo , Estructura Terciaria de Proteína , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Cohesinas
13.
Mol Cell ; 31(1): 47-56, 2008 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-18614046

RESUMEN

Cohesin, the protein complex that mediates sister chromatid cohesion, is required for faithful chromosome segregation and efficient repair of double-strand breaks (DSBs). Cohesion generation is normally restricted to S phase. However, in G2/M, a DSB activates cohesion generation near the DSB and genome-wide. Here, using budding yeast, we show that DSB-induced cohesion occurs when cohesin contains the kleisin subunit, Mcd1 (Scc1), but not when Mcd1 is replaced by its meiotic isoform, Rec8. We exploit this divergence to demonstrate that serine 83 of Mcd1 and the Chk1 kinase are critical determinants for DSB-induced cohesion. We propose that a DSB in G2/M activates Mec1 (ATR), which in turn stimulates Chk1-dependent phosphorylation of Mcd1 at serine 83. Serine 83 phosphorylation promotes chromatin-bound cohesin to become cohesive.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Daño del ADN , Proteínas Nucleares/metabolismo , Fosfoproteínas/metabolismo , Subunidades de Proteína/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Intercambio de Cromátides Hermanas , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Proteínas de Ciclo Celular/química , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1) , Roturas del ADN de Doble Cadena , Reparación del ADN , Replicación del ADN , Modelos Biológicos , Datos de Secuencia Molecular , Proteínas Nucleares/química , Fosfoproteínas/química , Fosforilación , Isoformas de Proteínas/metabolismo , Proteínas Quinasas/metabolismo , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/enzimología , Proteínas de Saccharomyces cerevisiae/química , Serina/metabolismo , Relación Estructura-Actividad , Cohesinas
14.
PLoS Genet ; 8(3): e1002633, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22479212

RESUMEN

DNA double-strand breaks impact genome stability by triggering many of the large-scale genome rearrangements associated with evolution and cancer. One of the first steps in repairing this damage is 5'→3' resection beginning at the break site. Recently, tools have become available to study the consequences of not extensively resecting double-strand breaks. Here we examine the role of Sgs1- and Exo1-dependent resection on genome stability using a non-selective assay that we previously developed using diploid yeast. We find that Saccharomyces cerevisiae lacking Sgs1 and Exo1 retains a very efficient repair process that is highly mutagenic to genome structure. Specifically, 51% of cells lacking Sgs1 and Exo1 repair a double-strand break using repetitive sequences 12-48 kb distal from the initial break site, thereby generating a genome rearrangement. These Sgs1- and Exo1-independent rearrangements depend partially upon a Rad51-mediated homologous recombination pathway. Furthermore, without resection a robust cell cycle arrest is not activated, allowing a cell with a single double-strand break to divide before repair, potentially yielding multiple progeny each with a different rearrangement. This profusion of rearranged genomes suggests that cells tolerate any dangers associated with extensive resection to inhibit mutagenic pathways such as break-distal recombination. The activation of break-distal recipient repeats and amplification of broken chromosomes when resection is limited raise the possibility that genome regions that are difficult to resect may be hotspots for rearrangements. These results may also explain why mutations in resection machinery are associated with cancer.


Asunto(s)
Roturas del ADN de Doble Cadena , Inestabilidad Genómica , Recombinación Homóloga , Secuencias Repetitivas de Ácidos Nucleicos/genética , Saccharomyces cerevisiae/genética , Alelos , Puntos de Control del Ciclo Celular , Rotura Cromosómica , Reparación del ADN , Diploidia , Exodesoxirribonucleasas/genética , Reordenamiento Génico , Genoma Fúngico , Recombinación Homóloga/genética , Recombinasa Rad51/genética , Recombinasa Rad51/metabolismo , RecQ Helicasas/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
15.
Proc Natl Acad Sci U S A ; 108(30): 12198-205, 2011 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-21670264

RESUMEN

Cohesin is a member of the Smc family of protein complexes that mediates higher-order chromosome structure by tethering different regions of chromatin. We present a new in vitro system that assembles cohesin-DNA complexes with in vivo properties. The assembly of these physiological salt-resistant complexes requires the cohesin holo-complex, its ability to bind ATP, the cohesin loader Scc2p and a closed DNA topology. Both the number of cohesin molecules bound to the DNA substrate and their distribution on the DNA substrate are limited. Cohesin and Scc2p bind preferentially to cohesin associated regions (CARs), DNA sequences with enriched cohesin binding in vivo. A subsequence of CARC1 promotes cohesin binding to neighboring sequences within CARC1. The enhancer-like function of this sequence is validated by in vivo deletion analysis. By demonstrating the physiological relevance of these in vitro assembled cohesin-DNA complexes, we establish our in vitro system as a powerful tool to elucidate the mechanism of cohesin and other Smc complexes.


Asunto(s)
Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/metabolismo , Proteínas Cromosómicas no Histona/química , Proteínas Cromosómicas no Histona/metabolismo , ADN de Hongos/química , ADN de Hongos/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Secuencia de Bases , Inmunoprecipitación de Cromatina , Cromosomas Fúngicos/química , Cromosomas Fúngicos/metabolismo , ADN de Hongos/genética , Sustancias Macromoleculares/química , Sustancias Macromoleculares/metabolismo , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Cohesinas
16.
Yeast ; 30(12): 501-9, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24185677

RESUMEN

Here we describe the first high-throughput amenable method of quantifying Saccharomyces cerevisiae culture viability. Current high-throughput methods of assessing yeast cell viability, such as flow cytometry and SGA analysis, do not measure the percentage viability of a culture but instead measure cell vitality or colony fitness, respectively. We developed a method, called tadpoling, to quantify the percentage viability of a yeast culture, with the ability to detect as few as one viable cell amongst ~10(8) dead cells. The most important feature of this assay is the exploitation of yeast colony formation in liquid medium. Utilizing a microtiter dish, we are able to observe a range of viability of 100% to 0.0001%. Comparison of tadpoling to the traditional plating method to measure yeast culture viability reveals that, for the majority of Saccharomyces species analyzed there is no significant difference between the two methods. In comparison to flow cytometry using propidium iodide, the high-throughput method of measuring yeast culture viability, tadpoling is much more accurate at culture viabilities < 1%. Thus, we show that tadpoling provides an easy, inexpensive, space-saving method, amenable to high-throughput screens, for accurately measuring yeast cell viability.


Asunto(s)
Saccharomyces cerevisiae/crecimiento & desarrollo , Recuento de Colonia Microbiana/métodos , Saccharomyces cerevisiae/citología , Sensibilidad y Especificidad , Factores de Tiempo
17.
PLoS Genet ; 6(12): e1001228, 2010 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-21151956

RESUMEN

Genome rearrangements often result from non-allelic homologous recombination (NAHR) between repetitive DNA elements dispersed throughout the genome. Here we systematically analyze NAHR between Ty retrotransposons using a genome-wide approach that exploits unique features of Saccharomyces cerevisiae purebred and Saccharomyces cerevisiae/Saccharomyces bayanus hybrid diploids. We find that DNA double-strand breaks (DSBs) induce NAHR-dependent rearrangements using Ty elements located 12 to 48 kilobases distal to the break site. This break-distal recombination (BDR) occurs frequently, even when allelic recombination can repair the break using the homolog. Robust BDR-dependent NAHR demonstrates that sequences very distal to DSBs can effectively compete with proximal sequences for repair of the break. In addition, our analysis of NAHR partner choice between Ty repeats shows that intrachromosomal Ty partners are preferred despite the abundance of potential interchromosomal Ty partners that share higher sequence identity. This competitive advantage of intrachromosomal Tys results from the relative efficiencies of different NAHR repair pathways. Finally, NAHR generates deleterious rearrangements more frequently when DSBs occur outside rather than within a Ty repeat. These findings yield insights into mechanisms of repeat-mediated genome rearrangements associated with evolution and cancer.


Asunto(s)
Reparación del ADN , Recombinación Genética , Secuencias Repetitivas de Ácidos Nucleicos , Saccharomyces cerevisiae/genética , Roturas del ADN de Doble Cadena , Elementos Transponibles de ADN , Genoma Fúngico , Saccharomyces/genética
18.
J Cell Biol ; 176(7): 911-8, 2007 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-17371833

RESUMEN

Homologue segregation during the first meiotic division requires the proper spatial regulation of sister chromatid cohesion and its dissolution along chromosome arms, but its protection at centromeric regions. This protection requires the conserved MEI-S332/Sgo1 proteins that localize to centromeric regions and also recruit the PP2A phosphatase by binding its regulatory subunit, Rts1. Centromeric Rts1/PP2A then locally prevents cohesion dissolution possibly by dephosphorylating the protein complex cohesin. We show that Aurora B kinase in Saccharomyces cerevisiae (Ipl1) is also essential for the protection of meiotic centromeric cohesion. Coupled with a previous study in Drosophila melanogaster, this meiotic function of Aurora B kinase appears to be conserved among eukaryotes. Furthermore, we show that Sgo1 recruits Ipl1 to centromeric regions. In the absence of Ipl1, Rts1 can initially bind to centromeric regions but disappears from these regions after anaphase I onset. We suggest that centromeric Ipl1 ensures the continued centromeric presence of active Rts1/PP2A, which in turn locally protects cohesin and cohesion.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Centrómero/enzimología , Proteínas Cromosómicas no Histona/metabolismo , Meiosis/fisiología , Proteínas Nucleares/metabolismo , Fosfoproteínas Fosfatasas/metabolismo , Proteínas Quinasas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimología , Aurora Quinasas , Sitios de Unión/fisiología , Proteínas de Ciclo Celular/genética , Centrómero/genética , Proteínas Cromosómicas no Histona/genética , Segregación Cromosómica/fisiología , Péptidos y Proteínas de Señalización Intracelular , Proteínas Nucleares/genética , Fosfoproteínas Fosfatasas/genética , Unión Proteica/fisiología , Proteínas Quinasas/genética , Proteínas Serina-Treonina Quinasas , Subunidades de Proteína/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Cohesinas
19.
Nucleic Acids Res ; 37(18): 6126-34, 2009 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-19692582

RESUMEN

Eco1p/Ctf7p is an essential acetyltransferase required for the establishment of sister chromatid cohesion. Eco1p acetylates Smc3p and Mcd1p (Scc1p or Rad21p) to establish cohesion during S phase and in response to DNA damage, respectively. In addition to its acetyltransferase domain, Eco1p harbors a conserved zinc finger domain. The zinc finger has been implicated in the establishment of sister chromatid cohesion in S phase, yet its function on the molecular level and its contribution to damage-induced cohesion are unknown. Here, we show that the zinc finger is essential for the establishment of cohesion in both S phase and in response to DNA damage. Our results suggest that the zinc finger augments the acetylation of Eco1p itself, Smc3p and likely Mcd1p. We propose that the zinc finger is a general enhancer of substrate recognition, thereby enhances the ability of Eco1p to acetylate its substrates above a threshold needed to generate cohesion during DNA replication and repair. Finally our studies of the zinc finger led to the discovery that Eco1 is a multimer, a property that could be exploited to coordinate acetylation of substrates either spatially or temporally for establishment of sister chromatid cohesion.


Asunto(s)
Acetiltransferasas/química , Cromátides/enzimología , Proteínas Nucleares/química , Proteínas de Saccharomyces cerevisiae/química , Dedos de Zinc , Acetiltransferasas/genética , Acetiltransferasas/metabolismo , Secuencia de Aminoácidos , Daño del ADN , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Multimerización de Proteína , Fase S , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
20.
Elife ; 102021 02 17.
Artículo en Inglés | MEDLINE | ID: mdl-33594972

RESUMEN

Cohesin helps mediate sister chromatid cohesion, chromosome condensation, DNA repair, and transcription regulation. We exploited proximity-dependent labeling to define the in vivo interactions of cohesin domains with DNA or with other cohesin domains that lie within the same or in different cohesin complexes. Our results suggest that both cohesin's head and hinge domains are proximal to DNA, and cohesin structure is dynamic with differential folding of its coiled coil regions to generate butterfly confirmations. This method also reveals that cohesins form ordered clusters on and off DNA. The levels of cohesin clusters and their distribution on chromosomes are cell cycle-regulated. Cohesin clustering is likely necessary for cohesion maintenance because clustering and maintenance uniquely require the same subset of cohesin domains and the auxiliary cohesin factor Pds5p. These conclusions provide important new mechanistic and biological insights into the architecture of the cohesin complex, cohesin-cohesin interactions, and cohesin's tethering and loop-extruding activities.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Ciclo Celular/genética , Cromátides/fisiología , Proteínas Cromosómicas no Histona/genética , Cromosomas Fúngicos , Reparación del ADN , Dominios Proteicos , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Cohesinas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA