Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
J Biol Chem ; 296: 100593, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33775697

RESUMEN

Dysregulation of the developmentally important Notch signaling pathway is implicated in several types of cancer, including breast cancer. However, the specific roles and regulation of the four different Notch receptors have remained elusive. We have previously reported that the oncogenic PIM kinases phosphorylate Notch1 and Notch3. Phosphorylation of Notch1 within the second nuclear localization sequence of its intracellular domain (ICD) enhances its transcriptional activity and tumorigenicity. In this study, we analyzed Notch3 phosphorylation and its functional impact. Unexpectedly, we observed that the PIM target sites are not conserved between Notch1 and Notch3. Notch3 ICD (N3ICD) is phosphorylated within a domain, which is essential for formation of a transcriptionally active complex with the DNA-binding protein CSL. Through molecular modeling, X-ray crystallography, and isothermal titration calorimetry, we demonstrate that phosphorylation of N3ICD sterically hinders its interaction with CSL and thereby inhibits its CSL-dependent transcriptional activity. Surprisingly however, phosphorylated N3ICD still maintains tumorigenic potential in breast cancer cells under estrogenic conditions, which support PIM expression. Taken together, our data indicate that PIM kinases modulate the signaling output of different Notch paralogs by targeting distinct protein domains and thereby promote breast cancer tumorigenesis via both CSL-dependent and CSL-independent mechanisms.


Asunto(s)
Neoplasias de la Mama/patología , Carcinogénesis , Proteínas Proto-Oncogénicas c-pim-1/metabolismo , Receptor Notch3/metabolismo , Transporte Activo de Núcleo Celular , Animales , Línea Celular Tumoral , Núcleo Celular/metabolismo , Humanos , Proteína de Unión a la Señal Recombinante J de las Inmunoglobulinas/metabolismo , Ratones , Modelos Moleculares , Proteínas Musculares/metabolismo , Fosforilación , Dominios Proteicos , Receptor Notch3/química
2.
Cell Commun Signal ; 19(1): 68, 2021 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-34193159

RESUMEN

BACKGROUND: The oncogenic PIM kinases and the tumor-suppressive LKB1 kinase have both been implicated in the regulation of cell growth and metabolism, albeit in opposite directions. Here we investigated whether these kinases interact with each other to influence AMPK activation and tumorigenic growth of prostate and breast cancer cells. METHODS: We first determined how PIM and LKB1 kinases affect AMPK phosphorylation levels. We then used in vitro kinase assays to demonstrate that LKB1 is phosphorylated by PIM kinases, and site-directed mutagenesis to identify the PIM target sites in LKB1. The cellular functions of PIM and LKB1 kinases were evaluated using either pan-PIM inhibitors or CRISPR/Cas9 genomic editing, with which all three PIM family members and/or LKB1 were knocked out from PC3 prostate and MCF7 breast cancer cell lines. In addition to cell proliferation assays, we examined the effects of PIM and/or LKB1 loss on tumor growth using the chick embryo chorioallantoic membrane (CAM) xenograft model. RESULTS: We provide both genetic and pharmacological evidence to demonstrate that inhibition of PIM expression or activity increases phosphorylation of AMPK at Thr172 in both PC3 and MCF7 cells, but not in their derivatives lacking LKB1. This is explained by our observation that all three PIM family kinases can phosphorylate LKB1 at Ser334. Wild-type LKB1, but not its phosphodeficient derivative, can restore PIM inhibitor-induced AMPK phosphorylation in LKB1 knock-out cells. In the CAM model, loss of LKB1 enhances tumorigenicity of PC3 xenografts, while cells lacking both LKB1 and PIMs exhibit slower proliferation rates and form smaller tumors. CONCLUSION: PIM kinases are novel negative regulators of LKB1 that affect AMPK activity in an LKB1-dependent fashion. The impairment of cell proliferation and tumor growth in cells lacking both LKB1 and PIMs indicates that these kinases possess a shared signaling role in the context of cancer. These data also suggest that PIM inhibitors may be a rational therapeutic option for LKB1-deficient tumors. Video Abstract.


Asunto(s)
Quinasas de la Proteína-Quinasa Activada por el AMP/metabolismo , Proteínas Quinasas Activadas por AMP/metabolismo , Carcinogénesis/metabolismo , Carcinogénesis/patología , Proteínas Proto-Oncogénicas c-pim-1/metabolismo , Proteínas Quinasas Activadas por AMP/antagonistas & inhibidores , Línea Celular Tumoral , Proliferación Celular , Activación Enzimática , Humanos , Fosforilación , Unión Proteica , Especificidad por Sustrato
3.
Cell Commun Signal ; 18(1): 121, 2020 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-32771000

RESUMEN

BACKGROUND: The PIM family kinases promote cancer cell survival and motility as well as metastatic growth in various types of cancer. We have previously identified several PIM substrates, which support cancer cell migration and invasiveness. However, none of them are known to regulate cellular movements by directly interacting with the actin cytoskeleton. Here we have studied the phosphorylation-dependent effects of PIM1 on actin capping proteins, which bind as heterodimers to the fast-growing actin filament ends and stabilize them. METHODS: Based on a phosphoproteomics screen for novel PIM substrates, we have used kinase assays and fluorescence-based imaging techniques to validate actin capping proteins as PIM1 substrates and interaction partners. We have analysed the functional consequences of capping protein phosphorylation on cell migration and adhesion by using wound healing and real-time impedance-based assays. We have also investigated phosphorylation-dependent effects on actin polymerization by analysing the protective role of capping protein phosphomutants in actin disassembly assays. RESULTS: We have identified capping proteins CAPZA1 and CAPZB2 as PIM1 substrates, and shown that phosphorylation of either of them leads to increased adhesion and migration of human prostate cancer cells. Phosphorylation also reduces the ability of the capping proteins to protect polymerized actin from disassembly. CONCLUSIONS: Our data suggest that PIM kinases are able to induce changes in actin dynamics to support cell adhesion and movement. Thus, we have identified a novel mechanism through which PIM kinases enhance motility and metastatic behaviour of cancer cells. Video abstract.


Asunto(s)
Proteínas de Capping de la Actina/metabolismo , Movimiento Celular , Neoplasias de la Próstata/metabolismo , Neoplasias de la Próstata/patología , Proteínas Proto-Oncogénicas c-pim-1/metabolismo , Actinas/metabolismo , Animales , Adhesión Celular , Línea Celular Tumoral , Extensiones de la Superficie Celular/metabolismo , Citoplasma/metabolismo , Humanos , Masculino , Ratones , Fosforilación , Multimerización de Proteína , Subunidades de Proteína/metabolismo , Proteínas Proto-Oncogénicas c-pim-1/antagonistas & inhibidores
4.
Cell Commun Signal ; 17(1): 148, 2019 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-31730483

RESUMEN

BACKGROUND: Progression of prostate cancer from benign local tumors to metastatic carcinomas is a multistep process. Here we have investigated the signaling pathways that support migration and invasion of prostate cancer cells, focusing on the role of the NFATC1 transcription factor and its post-translational modifications. We have previously identified NFATC1 as a substrate for the PIM1 kinase and shown that PIM1-dependent phosphorylation increases NFATC1 activity without affecting its subcellular localization. Both PIM kinases and NFATC1 have been reported to promote cancer cell migration, invasion and angiogenesis, but it has remained unclear whether the effects of NFATC1 are phosphorylation-dependent and which downstream targets are involved. METHODS: We used mass spectrometry to identify PIM1 phosphorylation target sites in NFATC1, and analysed their functional roles in three prostate cancer cell lines by comparing phosphodeficient mutants to wild-type NFATC1. We used luciferase assays to determine effects of phosphorylation on NFAT-dependent transcriptional activity, and migration and invasion assays to evaluate effects on cell motility. We also performed a microarray analysis to identify novel PIM1/NFATC1 targets, and validated one of them with both cellular expression analyses and in silico in clinical prostate cancer data sets. RESULTS: Here we have identified ten PIM1 target sites in NFATC1 and found that prevention of their phosphorylation significantly decreases the transcriptional activity as well as the pro-migratory and pro-invasive effects of NFATC1 in prostate cancer cells. We observed that also PIM2 and PIM3 can phosphorylate NFATC1, and identified several novel putative PIM1/NFATC1 target genes. These include the ITGA5 integrin, which is differentially expressed in the presence of wild-type versus phosphorylation-deficient NFATC1, and which is coexpressed with PIM1 and NFATC1 in clinical prostate cancer specimens. CONCLUSIONS: Based on our data, phosphorylation of PIM1 target sites stimulates NFATC1 activity and enhances its ability to promote prostate cancer cell migration and invasion. Therefore, inhibition of the interplay between PIM kinases and NFATC1 may have therapeutic implications for patients with metastatic forms of cancer.


Asunto(s)
Movimiento Celular , Factores de Transcripción NFATC/metabolismo , Neoplasias de la Próstata/metabolismo , Proteínas Proto-Oncogénicas c-pim-1/metabolismo , Proliferación Celular , Humanos , Masculino , Espectrometría de Masas , Células PC-3 , Fosforilación , Neoplasias de la Próstata/patología , Transducción de Señal , Células Tumorales Cultivadas
5.
Exp Cell Res ; 342(2): 113-24, 2016 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-26934497

RESUMEN

The ability of cells to migrate and form metastases is one of the fatal hallmarks of cancer that can be conquered only with better understanding of the molecules and regulatory mechanisms involved. The oncogenic PIM kinases have been shown to support cancer cell survival and motility, but the PIM-regulated pathways stimulating cell migration and invasion are less well characterized than those affecting cell survival. Here we have identified the glycogen synthase kinase 3ß (GSK3B) and the forkhead box P3 (FOXP3) transcription factor as direct PIM targets, whose tumour-suppressive effects in prostate cancer cells are inhibited by PIM-induced phosphorylation, resulting in increased cell migration. Targeting GSK3B is also essential for the observed PIM-enhanced expression of the prostaglandin-endoperoxide synthase 2 (PTGS2), which is an important regulator of both cell migration and adhesion. Accordingly, selective inhibition of PIM activity not only reduces cell migration, but also affects integrin-mediated cell adhesion. Taken together, these data provide novel mechanistic insights on how and why patients with metastatic prostate cancer may benefit from therapies targeting PIM kinases, and how such approaches may also be applicable to inflammatory conditions.


Asunto(s)
Adenocarcinoma/enzimología , Movimiento Celular , Neoplasias de la Próstata/enzimología , Proteínas Proto-Oncogénicas c-pim-1/fisiología , Adenocarcinoma/patología , Secuencia de Aminoácidos , Línea Celular Tumoral , Factores de Transcripción Forkhead/metabolismo , Glucógeno Sintasa Quinasa 3/metabolismo , Glucógeno Sintasa Quinasa 3 beta , Humanos , Masculino , Fosforilación , Neoplasias de la Próstata/patología , Procesamiento Proteico-Postraduccional , Transporte de Proteínas , Transducción de Señal
6.
J Biol Chem ; 288(5): 3048-58, 2013 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-23209281

RESUMEN

The differentiation of human primary T helper 1 (Th1) cells from naïve precursor cells is regulated by a complex, interrelated signaling network. The identification of factors regulating the early steps of Th1 cell polarization can provide important insight in the development of therapeutics for many inflammatory and autoimmune diseases. The serine/threonine-specific proviral integration site for Moloney murine leukemia virus (PIM) kinases PIM1 and PIM2 have been implicated in the cytokine-dependent proliferation and survival of lymphocytes. We have established that the third member of this family, PIM3, is also expressed in human primary Th cells and identified a new function for the entire PIM kinase family in T lymphocytes. Although PIM kinases are expressed more in Th1 than Th2 cells, we demonstrate here that these kinases positively influence Th1 cell differentiation. Our RNA interference results from human primary Th cells also suggest that PIM kinases promote the production of IFNγ, the hallmark cytokine produced by Th1 cells. Consistent with this, they also seem to be important for the up-regulation of the critical Th1-driving factor, T box expressed in T cells (T-BET), and the IL-12/STAT4 signaling pathway during the early Th1 differentiation process. In summary, we have identified PIM kinases as new regulators of human primary Th1 cell differentiation, thus providing new insights into the mechanisms controlling the selective development of human Th cell subsets.


Asunto(s)
Diferenciación Celular , Virus de la Leucemia Murina de Moloney/fisiología , Proteínas Serina-Treonina Quinasas/metabolismo , Provirus/fisiología , Células TH1/citología , Células TH1/enzimología , Integración Viral/fisiología , Animales , Diferenciación Celular/genética , Polaridad Celular/genética , Regulación hacia Abajo/genética , Perfilación de la Expresión Génica , Técnicas de Silenciamiento del Gen , Humanos , Recién Nacido , Interferón gamma/genética , Interferón gamma/metabolismo , Interleucina-12/metabolismo , Ratones , Proteínas Serina-Treonina Quinasas/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN Interferente Pequeño/metabolismo , Receptores de Interleucina-12/metabolismo , Factor de Transcripción STAT4/metabolismo , Factor de Transcripción STAT6/metabolismo , Transducción de Señal/genética , Proteínas de Dominio T Box/genética , Proteínas de Dominio T Box/metabolismo , Integración Viral/genética
7.
FEBS J ; 290(9): 2489-2502, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36239424

RESUMEN

Lactate dehydrogenase A (LDHA) is a glycolytic enzyme catalysing the reversible conversion of pyruvate to lactate. It has been implicated as a substrate for PIM kinases, yet the relevant target sites and functional consequences of phosphorylation have remained unknown. Here, we show that all three PIM family members can phosphorylate LDHA at serine 161. When we investigated the physiological consequences of this phosphorylation in PC3 prostate cancer and MCF7 breast cancer cells, we noticed that it suppressed ubiquitin-mediated degradation of nuclear LDHA and promoted interactions between LDHA and 14-3-3 proteins. By contrast, in CRISPR/Cas9-edited knock-out cells lacking all three PIM family members, ubiquitination of nuclear LDHA was dramatically increased followed by its decreased expression. Our data suggest that PIM kinases support nuclear LDHA expression and activities by promoting phosphorylation-dependent interactions of LDHA with 14-3-3ε, which shields nuclear LDHA from ubiquitin-mediated degradation.


Asunto(s)
Lactato Deshidrogenasa 5 , Proteínas Serina-Treonina Quinasas , Serina , Humanos , Línea Celular Tumoral , Lactato Deshidrogenasa 5/metabolismo , Serina/genética , Serina/metabolismo , Ubiquitinación , Ubiquitinas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo
8.
Pathogens ; 12(2)2023 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-36839433

RESUMEN

Bad indoor air quality due to toxins and other impurities can have a negative impact on human well-being, working capacity and health. Therefore, reliable methods to monitor the health risks associated with exposure to hazardous indoor air agents are needed. Here, we have used transgenic Caenorhabditis elegans nematode strains carrying stress-responsive fluorescent reporters and evaluated their ability to sense fungal or chemical toxins, especially those that are present in moisture-damaged buildings. Liquid-based or airborne exposure of nematodes to mycotoxins, chemical agents or damaged building materials reproducibly resulted in time- and dose-dependent fluorescent responses, which could be quantitated by either microscopy or spectrometry. Thus, the C. elegans nematodes present an easy, ethically acceptable and comprehensive in vivo model system to monitor the response of multicellular organisms to indoor air toxicity.

9.
PLoS Pathog ; 5(3): e1000324, 2009 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-19266083

RESUMEN

Host signal-transduction pathways are intimately involved in the switch between latency and productive infection of herpes viruses. As with other herpes viruses, infection by Kaposi's sarcoma herpesvirus (KSHV) displays these two phases. During latency only few viral genes are expressed, while in the productive infection the virus is reactivated with initiation of extensive viral DNA replication and gene expression, resulting in production of new viral particles. Viral reactivation is crucial for KSHV pathogenesis and contributes to the progression of KS. We have recently identified Pim-1 as a kinase reactivating KSHV upon over-expression. Here we show that another Pim family kinase, Pim-3, also induces viral reactivation. We demonstrate that expression of both Pim-1 and Pim-3 is induced in response to physiological and chemical reactivation in naturally KSHV-infected cells, and we show that they are required for KSHV reactivation under these conditions. Furthermore, our data indicate that Pim-1 and Pim-3 contribute to viral reactivation by phosphorylating the KSHV latency-associated nuclear antigen (LANA) on serine residues 205 and 206. This counteracts the LANA-mediated repression of the KSHV lytic gene transcription. The identification of Pim family kinases as novel cellular regulators of the gammaherpesvirus life cycle facilitates a deeper understanding of virus-host interactions during reactivation and may represent potential novel targets for therapeutic intervention.


Asunto(s)
Antígenos Virales/metabolismo , Herpesvirus Humano 8/fisiología , Proteínas Nucleares/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-pim-1/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Activación Viral , Latencia del Virus , Animales , Línea Celular Tumoral , Chlorocebus aethiops , Regulación Viral de la Expresión Génica , Interacciones Huésped-Patógeno , Humanos , Interferón gamma/metabolismo , Fosforilación , Proteínas Serina-Treonina Quinasas/genética , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas c-pim-1/genética , ARN Interferente Pequeño/metabolismo , Transducción de Señal , Células Vero , Replicación Viral
10.
Cancer Med ; 10(10): 3427-3436, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33932111

RESUMEN

The three oncogenic PIM family kinases have been implicated in the development of prostate cancer (PCa). The aim of this study was to examine the mRNA and protein expression levels of PIM1, PIM2, and PIM3 in PCa and their associations with the MYC and ERG oncogenes. We utilized prostate tissue specimens of normal, benign prostatic hyperplasia (BPH), prostatic intraepithelial neoplasia (PIN), untreated PCa, and castration-resistant prostate cancer (CRPC) for immunohistochemical (IHC) analysis. In addition, we analyzed data from publicly available mRNA expression and chromatin immunoprecipitation sequencing (ChIP-Seq) datasets. Our data demonstrated that PIM expression levels are significantly elevated in PCa compared to benign samples. Strikingly, the expression of both PIM1 and PIM2 was further increased in CRPC compared to PCa. We also demonstrated a significant association between upregulated PIM family members and both the ERG and MYC oncoproteins. Interestingly, ERG directly binds to the regulatory regions of all PIM genes and upregulates their expression. Furthermore, ERG suppression with siRNA reduced the expression of PIM in PCa cells. These results provide evidence for cooperation of PIM and the MYC and ERG oncoproteins in PCa development and progression and may help to stratify suitable patients for PIM-targeted therapies.


Asunto(s)
Neoplasias de la Próstata/genética , Proteínas Proto-Oncogénicas c-pim-1/genética , Anciano , Regulación Neoplásica de la Expresión Génica/genética , Humanos , Masculino , Persona de Mediana Edad , Próstata/patología , Hiperplasia Prostática/genética , Hiperplasia Prostática/patología , Neoplasias de la Próstata/patología , ARN Mensajero/genética , ARN Interferente Pequeño/genética , Regulador Transcripcional ERG/genética , Regulación hacia Arriba/genética
11.
Mol Cancer ; 9: 279, 2010 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-20958956

RESUMEN

BACKGROUND: Pim family kinases are small constitutively active serine/threonine-specific kinases, elevated levels of which have been detected in human hematopoietic malignancies as well as in solid tumours. While we and others have previously shown that the oncogenic Pim kinases stimulate survival of hematopoietic cells, we now examined their putative role in regulating motility of adherent cancer cells. For this purpose, we inhibited Pim kinase activity using a small molecule compound, 1,10-dihydropyrrolo[2,3-a]carbazole-3-carbaldehyde (DHPCC-9), which we had recently identified as a potent and selective inhibitor for all Pim family members. RESULTS: We now demonstrate that the Pim kinase inhibitor DHPCC-9 is very effective also in cell-based assays. DHPCC-9 impairs the anti-apoptotic effects of Pim-1 in cytokine-deprived myeloid cells and inhibits intracellular phosphorylation of Pim substrates such as Bad. Moreover, DHPCC-9 slows down migration and invasion of cancer cells derived from either prostate cancer or squamocellular carcinoma patients. Silencing of Pim expression reduces cell motility, while Pim overexpression enhances it, strongly suggesting that the observed effects of DHPCC-9 are dependent on Pim kinase activity. Interestingly, DHPCC-9 also abrogates NFATc-dependent migration of cancer cells, implying that NFATc factors mediate at least part of the pro-migratory effects of Pim kinases. CONCLUSIONS: Altogether, our data indicate that DHPCC-9 is not only a powerful tool to investigate physiological effects of the oncogenic Pim family kinases, but also an attractive molecule for drug development to inhibit invasiveness of Pim-overexpressing cancer cells.


Asunto(s)
Movimiento Celular/efectos de los fármacos , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Proto-Oncogénicas c-pim-1/metabolismo , Animales , Western Blotting , Línea Celular , Línea Celular Tumoral , Movimiento Celular/genética , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/genética , Humanos , Ratones , Células Mieloides/citología , Células Mieloides/efectos de los fármacos , Células Mieloides/metabolismo , Factores de Transcripción NFATC/genética , Factores de Transcripción NFATC/metabolismo , Fosforilación/efectos de los fármacos , Proteínas Proto-Oncogénicas c-pim-1/antagonistas & inhibidores , Proteínas Proto-Oncogénicas c-pim-1/genética
12.
Transl Androl Urol ; 9(3): 1120-1134, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32676396

RESUMEN

BACKGROUND: Patient-derived xenografts (PDXs) are considered to better recapitulate the histopathological and molecular heterogeneity of human cancer than other preclinical models. Despite technological advances, PDX models from hormone naïve primary prostate cancer are scarce. We performed a detailed analysis of PDX methodology using a robust subcutaneous model and fresh tissues from patients with primary hormone naïve prostate cancer. METHODS: Clinical prostate tumor specimens (n=26, Gleason score 6-10) were collected from robotic-assisted laparoscopic radical prostatectomies at Turku University Hospital (Turku, Finland), cut into pieces, and implanted subcutaneously into 84 immunodeficient mice. Engraftments and the adjacent material from prostatic surgical specimens were compared using histology, immunohistochemistry and DNA sequencing. RESULTS: The probability of a successful engraftment correlated with the presence of carcinoma in the implanted tissue. Tumor take rate was 41%. Surprisingly, mouse hormone supplementation inhibited tumor take rate, whereas the degree of mouse immunodeficiency did not have an effect. Histologically, the engrafted tumors closely mimicked their parental tumors, and the Gleason grades and copy number variants of the engraftments were similar to those of their primary tumors. Expression levels of androgen receptor, prostate-specific antigen, and keratins were retained in engraftments, and a detailed genomic analysis revealed high fidelity of the engraftments with their corresponding primary tumors. However, in the second or third passage of tumors, the carcinoma areas were almost completely replaced by benign tissue with frequent degenerative or metaplastic changes. CONCLUSIONS: Subcutaneous primary prostate engraftments preserve the phenotypic and genotypic landscape. Thus, they serve a potential model for personalized medicine and preclinical research but their use may be limited to the first passage.

13.
Anal Chim Acta ; 1055: 126-132, 2019 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-30782363

RESUMEN

We have developed a rapid and sensitive universal peptide-based time-resolved luminescence assay for detection of enzymatic post-translational modifications (PTMs). PTMs play essential roles in intracellular signaling and cell regulation, thus providing functional protein diversity in cell. Due this, impaired PTM patterns have been linked to multiple disease states. Clear link between PTMs and pathological conditions have also driven assay development further, but still today most of the methodologies are based on single-specificity or group-specific PTM-recognition. We have previously introduced leuzine-zipper based peptide-break technology as a viable option for universal PTM detection. Here, we introduce peptide-break technology utilizing single-label homogeneous quenching resonance energy transfer (QRET) and charge-based peptide-peptide interaction. We demonstrate the functionality of the new assay concept in phosphorylation, deacetylation, and citrullination. In a comparable study between previously introduced leucine-zipper and the novel charge-based approach, we found equal PTM detection performance and sensitivity, but the peptide design for new targets is simplified with the charged peptides. The new concept allows the use of short <20 amino acid peptides without limitations rising from the leucine-zipper coiled-coil structure. Introduced methodology enables wash-free PTM detection in a 384-well plate format, using low nanomolar enzyme concentrations. Potentially, the peptide-break technique using charged peptides may be applicable for natural peptide sequences directly obtained from the target protein.


Asunto(s)
Mediciones Luminiscentes/métodos , Péptidos/metabolismo , Procesamiento Proteico-Postraduccional , Acetilación , Secuencia de Aminoácidos , Citrulinación , Europio/química , Péptidos/química
14.
eNeuro ; 6(4)2019.
Artículo en Inglés | MEDLINE | ID: mdl-31387876

RESUMEN

The mammalian PIM family of serine/threonine kinases regulate several cellular functions, such as cell survival and motility. Because PIM expression is observed in sensory organs, such as olfactory epithelium, we now wanted to explore the physiological roles of PIM kinases there. As our model organism, we used the Caenorhabditis elegans nematodes, which express two PIM-related kinases, PRK-1 and PRK-2. We demonstrated PRKs to be true PIM orthologs with similar substrate specificity as well as sensitivity to PIM-inhibitory compounds. When we analyzed the effects of pan-PIM inhibitors on C. elegans sensory functions, we observed that PRK activity is selectively required to support olfactory sensations to volatile repellents and attractants sensed by AWB and AWCON neurons, respectively, but is dispensable for gustatory sensations. Analyses of prk-deficient mutant strains confirmed these findings and suggested that PRK-1, but not PRK-2 is responsible for the observed effects on olfaction. This regulatory role of PRK-1 is further supported by its observed expression in the head and tail neurons, including AWB and AWC neurons. Based on the evolutionary conservation of PIM-related kinases, our data may have implications in regulation of also mammalian olfaction.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/enzimología , Neuronas Receptoras Olfatorias/enzimología , Proteína Quinasa C/metabolismo , Proteínas Proto-Oncogénicas c-pim-1/metabolismo , Olfato/fisiología , Secuencia de Aminoácidos , Animales , Evolución Molecular , Odorantes , Especificidad de la Especie
15.
Int J Biochem Cell Biol ; 93: 74-85, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-29108877

RESUMEN

PIM kinases are oncogenic serine/threonine kinases, the expression and activities of which are tightly regulated in normal tissues, but upregulated in many types of human malignancies, including both hematological and solid cancers. Since high PIM expression levels have been connected to cancer progression and poor patient survival, PIM kinases have become attractive targets for drug development. Many downstream targets have also been identified, through which PIM kinases promote cell survival, proliferation and metabolism. More recently, PIM kinases have been implicated in regulation of cell motility, which also plays an important role in tumor growth and cancer progression. This review summarizes effects of PIM kinases and their substrates especially on cancer cell migration, invasion and metastatic growth, based on data from cell-based assays, animal experiments and patients.


Asunto(s)
Movimiento Celular , Proliferación Celular , Neoplasias/enzimología , Proteínas Proto-Oncogénicas c-pim-1/metabolismo , Animales , Humanos , Invasividad Neoplásica , Metástasis de la Neoplasia , Neoplasias/patología , Neoplasias/terapia , Proteínas Proto-Oncogénicas c-pim-1/genética
16.
Org Lett ; 19(8): 2030-2033, 2017 04 21.
Artículo en Inglés | MEDLINE | ID: mdl-28379712

RESUMEN

The built-in o- and p-QM (QM = quinone methide) moieties in benzo[cd]azulen-3-ones account for an easy switch between the bridged 10π- and 6π-aromatic systems in organic synthesis. We report conjugate additions, oxidative nucleophilic substitutions of hydrogen, and reversible Michael additions under very mild conditions. In the presence of thiol nucleophiles, the protonated σH-adducts could be isolated and characterized. The typical preference for either the o- or p-QM moiety led to high regioselectivity. Furthermore, the inhibitory potency of the novel benzo[cd]azulenes against the human Pim-1 kinase was evaluated.

17.
BMC Cell Biol ; 7: 21, 2006 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-16684349

RESUMEN

BACKGROUND: The pim family genes encode oncogenic serine/threonine kinases which in hematopoietic cells have been implicated in cytokine-dependent signaling as well as in lymphomagenesis, especially in cooperation with other oncogenes such as myc, bcl-2 or Runx family genes. The Runx genes encode alpha-subunits of heterodimeric transcription factors which regulate cell proliferation and differentiation in various tissues during development and which can become leukemogenic upon aberrant expression. RESULTS: Here we have identified novel protein-protein interactions between the Pim-1 kinase and the RUNX family transcription factors. Using the yeast two-hybrid system, we were able to show that the C-terminal part of human RUNX3 associates with Pim-1. This result was confirmed in cell culture, where full-length murine Runx1 and Runx3 both coprecipitated and colocalized with Pim-1. Furthermore, catalytically active Pim-1 kinase was able to phosphorylate Runx1 and Runx3 proteins and enhance the transactivation activity of Runx1 in a dose-dependent fashion. CONCLUSION: Altogether, our results suggest that mammalian RUNX family transcription factors are novel binding partners and substrates for the Pim-1 kinase, which may be able to regulate their activities during normal hematopoiesis as well as in leukemogenesis.


Asunto(s)
Subunidad alfa 2 del Factor de Unión al Sitio Principal/metabolismo , Subunidad alfa 3 del Factor de Unión al Sitio Principal/metabolismo , Subunidades alfa del Factor de Unión al Sitio Principal/metabolismo , Proteínas Proto-Oncogénicas c-pim-1/metabolismo , Activación Transcripcional/efectos de los fármacos , Activación Transcripcional/fisiología , Animales , Células COS , Diferenciación Celular/fisiología , Núcleo Celular/química , Chlorocebus aethiops , Subunidad alfa 2 del Factor de Unión al Sitio Principal/genética , Subunidad alfa 3 del Factor de Unión al Sitio Principal/genética , Subunidades alfa del Factor de Unión al Sitio Principal/genética , Relación Dosis-Respuesta a Droga , Regulación Neoplásica de la Expresión Génica , Hematopoyesis/fisiología , Humanos , Células Jurkat , Ratones , Microscopía Fluorescente , Fosforilación/efectos de los fármacos , Unión Proteica , Mapeo de Interacción de Proteínas , Técnicas del Sistema de Dos Híbridos
18.
Oncotarget ; 7(28): 43220-43238, 2016 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-27281612

RESUMEN

Tumorigenesis is a multistep process involving co-operation between several deregulated oncoproteins. In this study, we unravel previously unrecognized interactions and crosstalk between Pim kinases and the Notch signaling pathway, with implications for both breast and prostate cancer. We identify Notch1 and Notch3, but not Notch2, as novel Pim substrates and demonstrate that for Notch1, the serine residue 2152 is phosphorylated by all three Pim family kinases. This target site is located in the second nuclear localization sequence (NLS) of the Notch1 intracellular domain (N1ICD), and is shown to be important for both nuclear localization and transcriptional activity of N1ICD. Phosphorylation-dependent stimulation of Notch1 signaling promotes migration of prostate cancer cells, balances glucose metabolism in breast cancer cells, and supports in vivo growth of both types of cancer cells on chick embryo chorioallantoic membranes. Furthermore, Pim-induced growth of orthotopic prostate xenografts in mice is associated with enhanced nuclear Notch1 activity. Finally, simultaneous inhibition of Pim and Notch abrogates the cellular responses more efficiently than individual treatments, opening up new vistas for combinatorial cancer therapy.


Asunto(s)
Neoplasias de la Mama/patología , Carcinogénesis/metabolismo , Neoplasias de la Próstata/patología , Proteínas Proto-Oncogénicas c-pim-1/metabolismo , Receptor Notch1/metabolismo , Transducción de Señal , Animales , Movimiento Celular , Embrión de Pollo , Femenino , Humanos , Células MCF-7 , Masculino , Ratones , Fosforilación , Receptor Notch2/metabolismo , Receptor Notch3/metabolismo , Serina/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
19.
Brain Res Mol Brain Res ; 138(2): 116-23, 2005 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-15935514

RESUMEN

The activity of NFATc family transcription factors is tightly regulated in T cells via signaling pathways initiated by stimulation of the T cell receptor or its downstream effectors such as the Pim-1 serine/threonine kinase. Here, we demonstrate that NFATc-dependent transcription is inducible also in NGF-differentiated rat PC12 pheochromocytoma cells treated with phorbol esthers, calcium ionophores and/or forskolin and that the Pim-1 kinase can further potentiate the effects of these agents. PC12 cells share many characteristics with sympathetic neurons and can be induced to produce and release catecholamines, such as dopamine and noradrenaline, and inflammatory cytokines, such as interleukin 6. Interestingly, Pim-1 can synergize with forskolin-induced signaling pathways to stimulate also neuroendocrine functions of PC12 cells.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Neuronas/metabolismo , Sistemas Neurosecretores/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Factores de Transcripción/metabolismo , Regulación hacia Arriba/fisiología , Animales , Catecolaminas/metabolismo , Colforsina/farmacología , Citocinas/metabolismo , Sinergismo Farmacológico , Ionóforos/farmacología , Factores de Transcripción NFATC , Factor de Crecimiento Nervioso/farmacología , Neuronas/efectos de los fármacos , Células PC12 , Ésteres del Forbol/farmacología , Proteínas Proto-Oncogénicas c-pim-1 , Ratas , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología , Sistema Nervioso Simpático/metabolismo , Activación Transcripcional/efectos de los fármacos , Activación Transcripcional/fisiología
20.
PLoS One ; 10(6): e0130340, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26075720

RESUMEN

BACKGROUND AND METHODS: Pim family proteins are oncogenic kinases implicated in several types of cancer and involved in regulation of cell proliferation, survival as well as motility. Here we have investigated the ability of Pim kinases to promote metastatic growth of prostate cancer cells in two xenograft models for human prostate cancer. We have also evaluated the efficacy of Pim-selective inhibitors to antagonize these effects. RESULTS: We show here that tumorigenic growth of both subcutaneously and orthotopically inoculated prostate cancer xenografts is enhanced by stable overexpression of either Pim-1 or Pim-3. Moreover, Pim-overexpressing orthotopic prostate tumors are highly invasive and able to migrate not only to the nearby prostate-draining lymph nodes, but also into the lungs to form metastases. When the xenografted mice are daily treated with the Pim-selective inhibitor DHPCC-9, both the volumes as well as the metastatic capacity of the tumors are drastically decreased. Interestingly, the Pim-promoted metastatic growth of the orthotopic xenografts is associated with enhanced angiogenesis and lymphangiogenesis. Furthermore, forced Pim expression also increases phosphorylation of the CXCR4 chemokine receptor, which may enable the tumor cells to migrate towards tissues such as the lungs that express the CXCL12 chemokine ligand. CONCLUSIONS: Our results indicate that Pim overexpression enhances the invasive properties of prostate cancer cells in vivo. These effects can be reduced by the Pim-selective inhibitor DHPCC-9, which can reach tumor tissues without serious side effects. Thus, Pim-targeting therapies with DHPCC-9-like compounds may help to prevent progression of local prostate carcinomas to fatally metastatic malignancies.


Asunto(s)
Metástasis de la Neoplasia/patología , Neoplasias de la Próstata/patología , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-pim-1/antagonistas & inhibidores , Proteínas Proto-Oncogénicas c-pim-1/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Animales , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Quimiocina CXCL12/metabolismo , Xenoinjertos , Humanos , Linfangiogénesis/fisiología , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Trasplante de Neoplasias , Neovascularización Patológica/patología , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Proteínas Serina-Treonina Quinasas/biosíntesis , Proteínas Proto-Oncogénicas/antagonistas & inhibidores , Proteínas Proto-Oncogénicas/biosíntesis , Proteínas Proto-Oncogénicas c-pim-1/biosíntesis , Receptores CXCR4/metabolismo , Trasplante Heterólogo , Pez Cebra
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA