Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Ecol Lett ; 24(3): 438-450, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33305904

RESUMEN

We tested for fire-induced (5-6 years post-fire) changes in the structure and functioning of the soil food web along a 3000-km north-south transect across European Russia, spanning all major forest types in the northern hemisphere outside the tropics. The total biomass of the detrital food web, including microbes and invertebrates, was not affected by fire. However, fire reduced the biomass of microfauna and mites, but had no impact on mesofauna or macrofauna. Fire also reduced rates of carbon (C) mobilisation by soil biota. Our results demonstrate that fire-induced shifts in soil food webs have significant short-term effects on forest soil C cycling, but that these effects vary across forest types and geographic locations.


Asunto(s)
Incendios , Incendios Forestales , Carbono , Ecosistema , Cadena Alimentaria , Bosques , Suelo
2.
Microb Ecol ; 66(4): 940-9, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23857378

RESUMEN

Rodents affect soil microbial communities by burrow architecture, diet composition, and foraging behavior. We examined the effect of desert rodents on nitrogen-fixing bacteria (NFB) communities by identifying bacteria colony-forming units (CFU) and measuring nitrogen fixation rates (ARA), denitrification (DA), and CO2 emission in soil from burrows of three gerbil species differing in diets. Psammomys obesus is folivorous, Meriones crassus is omnivorous, consuming green vegetation and seeds, and Dipodillus dasyurus is predominantly granivorous. We also identified NFB in the digestive tract of each rodent species and in Atriplex halimus and Anabasis articulata, dominant plants at the study site. ARA rates of soil from burrows of the rodent species were similar, and substantially lower than control soil, but rates of DA and CO2 emission differed significantly among burrows. Highest rates of DA and CO2 emission were measured in D. dasyurus burrows and lowest in P. obesus. CFU differed among bacteria isolates, which reflected dietary selection. Strains of cellulolytic representatives of the family Myxococcaceae and the genus Cytophaga dominated burrows of P. obesus, while enteric Bacteroides dominated burrows of D. dasyurus. Burrows of M. crassus contained both cellulolytic and enteric bacteria. Using discriminant function analysis, differences were revealed among burrow soils of all rodent species and control soil, and the two axes accounted for 91 % of the variance in bacterial occurrences. Differences in digestive tract bacterial occurrences were found among these rodent species. Bacterial colonies in P. obesus and M. crassus burrows were related to bacteria of A. articulata, the main plant consumed by both species. In contrast, bacteria colonies in the burrow soil of D. dasyurus were related to bacteria in its digestive tract. We concluded that gerbils play an important role as ecosystem engineers within their burrow environment and affect the microbial complex of the nitrogen-fixing organisms in soils.


Asunto(s)
Bacterias/aislamiento & purificación , Gerbillinae/fisiología , Microbiología del Suelo , Animales , Bacterias/clasificación , Bacterias/genética , Bacterias/metabolismo , Desnitrificación , Ecosistema , Tracto Gastrointestinal/microbiología , Gerbillinae/clasificación , Gerbillinae/microbiología , Nitrógeno/metabolismo , Fijación del Nitrógeno , Suelo/química
3.
Toxins (Basel) ; 10(11)2018 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-30453523

RESUMEN

Cyanobacteria synthesize neurotoxic ß-N-methylamino-l-alanine (BMAA). The roles of this non-protein amino acid in cyanobacterial cells are insufficiently studied. During diazotrophic growth, filamentous cyanobacteria form single differentiated cells, called heterocysts, which are separated by approximately 12⁻15 vegetative cells. When combined nitrogen is available, heterocyst formation is blocked and cyanobacterial filaments contain only vegetative cells. In the present study, we discovered that exogenous BMAA induces the process of heterocyst formation in filamentous cyanobacteria under nitrogen-replete conditions that normally repress cell differentiation. BMAA treated cyanobacteria form heterocyst-like dark non-fluorescent non-functional cells. It was found that glutamate eliminates the BMAA mediated derepression. Quantitative polymerase chain reaction (qPCR) permitted to detect the BMAA impact on the transcriptional activity of several genes that are implicated in nitrogen assimilation and heterocyst formation in Anabaena sp. PCC 7120. We demonstrated that the expression of several essential genes increases in the BMAA presence under repressive conditions.


Asunto(s)
Aminoácidos Diaminos/farmacología , Anabaena/efectos de los fármacos , Toxinas Bacterianas/farmacología , Regulación Bacteriana de la Expresión Génica/efectos de los fármacos , Anabaena/genética , Toxinas de Cianobacterias
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA