Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 85
Filtrar
1.
Plant J ; 119(1): 508-524, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38678521

RESUMEN

L-Arabinose (L-Ara) is a plant-specific sugar found in cell wall polysaccharides, proteoglycans, glycoproteins, and small glycoconjugates, which play physiologically important roles in cell proliferation and other essential cellular processes. L-Ara is synthesized as UDP-L-arabinose (UDP-L-Ara) from UDP-xylose (UDP-Xyl) by UDP-Xyl 4-epimerases (UXEs), a type of de novo synthesis of L-Ara unique to plants. In Arabidopsis, the Golgi-localized UXE AtMUR4 is the main contributor to UDP-L-Ara synthesis. However, cytosolic bifunctional UDP-glucose 4-epimerases (UGEs) with UXE activity, AtUGE1, and AtUGE3 also catalyze this reaction. For the present study, we first examined the physiological importance of bifunctional UGEs in Arabidopsis. The uge1 and uge3 mutants enhanced the dwarf phenotype of mur4 and further reduced the L-Ara content in cell walls, suggesting that bifunctional UGEs contribute to UDP-L-Ara synthesis. Through the introduction of point mutations exchanging corresponding amino acid residues between AtUGE1 with high UXE activity and AtUGE2 with low UXE activity, two mutations that increase relative UXE activity of AtUGE2 were identified. The crystal structures of AtUGE2 in complex forms with NAD+ and NAD+/UDP revealed that the UDP-binding domain of AtUGE2 has a more closed conformation and smaller sugar-binding site than bacterial and mammalian UGEs, suggesting that plant UGEs have the appropriate size and shape for binding UDP-Xyl and UDP-L-Ara to exhibit UXE activity. The presented results suggest that the capacity for cytosolic synthesis of UDP-L-Ara was acquired by the small sugar-binding site and several mutations of UGEs, enabling diversified utilization of L-Ara in seed plants.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Pared Celular , Citosol , UDPglucosa 4-Epimerasa , Azúcares de Uridina Difosfato , Arabidopsis/genética , Arabidopsis/enzimología , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Citosol/metabolismo , Citosol/enzimología , Azúcares de Uridina Difosfato/metabolismo , Pared Celular/metabolismo , UDPglucosa 4-Epimerasa/genética , UDPglucosa 4-Epimerasa/metabolismo , Mutación , Uridina Difosfato Xilosa/metabolismo , Uridina Difosfato Xilosa/genética
2.
Development ; 149(24)2022 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-36520083

RESUMEN

Arabinogalactan proteins are functionally diverse cell wall structural glycoproteins that have been implicated in cell wall remodeling, although the mechanistic actions remain elusive. Here, we identify and characterize two AGP glycoproteins, SLEEPING BEAUTY (SB) and SB-like (SBL), that negatively regulate the gametophore bud initiation in Physcomitrium patens by dampening cell wall loosening/softening. Disruption of SB and SBL led to accelerated gametophore formation and altered cell wall compositions. The function of SB is glycosylation dependent and genetically connected with the class C auxin response factor (ARF) transcription factors PpARFC1B and PpARFC2. Transcriptomics profiling showed that SB upregulates PpARFC2, which in turn suppresses a range of cell wall-modifying genes that are required for cell wall loosening/softening. We further show that PpARFC2 binds directly to multiple AuxRE motifs on the cis-regulatory sequences of PECTIN METHYLESTERASE to suppress its expression. Hence, our results demonstrate a mechanism by which the SB modulates the strength of intracellular auxin signaling output, which is necessary to fine-tune the timing of gametophore initials formation.


Asunto(s)
Bryopsida , Regulación de la Expresión Génica de las Plantas , Glicoproteínas de Membrana/metabolismo , Bryopsida/metabolismo , Ácidos Indolacéticos/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Factores de Transcripción/metabolismo
3.
Plant J ; 109(5): 1152-1167, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34862679

RESUMEN

The intricate architecture of cell walls and the complex cross-linking of their components hinders some industrial and agricultural applications of plant biomass. Xylan is a key structural element of grass cell walls, closely interacting with other cell wall components such as cellulose and lignin. The main branching points of grass xylan, 3-linked l-arabinosyl substitutions, can be modified by ferulic acid (a hydroxycinnamic acid), which cross-links xylan to other xylan chains and lignin. XAX1 (Xylosyl arabinosyl substitution of xylan 1), a rice (Oryza sativa) member of the glycosyltransferase family GT61, has been described to add xylosyl residues to arabinosyl substitutions modified by ferulic acid. In this study, we characterize hydroxycinnamic acid-decorated arabinosyl substitutions present on rice xylan and their cross-linking, in order to decipher the role of XAX1 in xylan synthesis. Our results show a general reduction of hydroxycinnamic acid-modified 3-linked arabinosyl substitutions in xax1 mutant rice regardless of their modification with a xylosyl residue. Moreover, structures resembling the direct cross-link between xylan and lignin (ferulated arabinosyl substitutions bound to lignin monomers and dimers), together with diferulates known to cross-link xylan, are strongly reduced in xax1. Interestingly, apart from feruloyl and p-coumaroyl modifications on arabinose, putative caffeoyl and oxalyl modifications were characterized, which were also reduced in xax1. Our results suggest an alternative function of XAX1 in the transfer of hydroxycinnamic acid-modified arabinosyl substitutions to xylan, rather than xylosyl transfer to arabinosyl substitutions. Ultimately, XAX1 plays a fundamental role in cross-linking, providing a potential target for the improvement of use of grass biomass.


Asunto(s)
Oryza , Xilanos , Pared Celular/metabolismo , Ácidos Cumáricos/metabolismo , Lignina/metabolismo , Oryza/genética , Oryza/metabolismo , Poaceae/metabolismo , Xilanos/metabolismo
4.
Plant Cell Physiol ; 64(11): 1356-1371, 2023 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-37718531

RESUMEN

The interdigitated pavement cell shape is suggested to be mechanically rational at both the cellular and tissue levels, but the biological significance of the cell shape is not fully understood. In this study, we explored the potential importance of the jigsaw puzzle-like cell shape for cotyledon morphogenesis in Arabidopsis. We used a transgenic line overexpressing a Rho-like GTPase-interacting protein, ROP-INTERACTIVE CRIB MOTIF-CONTAINING PROTEIN 1 (RIC1), which causes simple elongation of pavement cells. Computer-assisted microscopic analyses, including virtual reality observation, revealed that RIC1 overexpression resulted in abnormal cotyledon shapes with marginal protrusions, suggesting that the abnormal organ shape might be explained by changes in the pavement cell shape. Microscopic, biochemical and mechanical observations indicated that the pavement cell deformation might be due to reduction in the cell wall cellulose content with alteration of cortical microtubule organization. To examine our hypothesis that simple elongation of pavement cells leads to an abnormal shape with marginal protrusion of the cotyledon, we developed a mathematical model that examines the impact of planar cell growth geometry on the morphogenesis of the organ that is an assemblage of the cells. Computer simulations supported experimental observations that elongated pavement cells resulted in an irregular cotyledon shape, suggesting that marginal protrusions were due to local growth variation possibly caused by stochastic bias in the direction of cell elongation cannot be explained only by polarity-based cell elongation, but that an organ-level regulatory mechanism is required.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Forma de la Célula , Cotiledón/genética , Cotiledón/metabolismo , Microtúbulos/metabolismo , Hojas de la Planta/metabolismo
5.
Plant Cell ; 32(10): 3346-3369, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32769130

RESUMEN

Arabinogalactan proteins (AGPs) are a family of plant extracellular proteoglycans involved in many physiological events. AGPs are often anchored to the extracellular side of the plasma membrane and are highly glycosylated with arabinogalactan (AG) polysaccharides, but the molecular function of this glycosylation remains largely unknown. The ß-linked glucuronic acid (GlcA) residues in AG polysaccharides have been shown in vitro to bind to calcium in a pH-dependent manner. Here, we used Arabidopsis (Arabidopsis thaliana) mutants in four AG ß-glucuronyltransferases (GlcAT14A, -B, -D, and -E) to understand the role of glucuronidation of AG. AG isolated from glcat14 triple mutants had a strong reduction in glucuronidation. AG from a glcat14a/b/d triple mutant had lower calcium binding capacity in vitro than AG from wild-type plants. Some mutants had multiple developmental defects such as reduced trichome branching. glcat14a/b/e triple mutant plants had severely limited seedling growth and were sterile, and the propagation of calcium waves was perturbed in roots. Several of the developmental phenotypes were suppressed by increasing the calcium concentration in the growth medium. Our results show that AG glucuronidation is crucial for multiple developmental processes in plants and suggest that a function of AGPs might be to bind and release cell-surface apoplastic calcium.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Calcio/metabolismo , Galactanos/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Pleiotropía Genética , Glucurónidos/metabolismo , Mutación , Filogenia , Hojas de la Planta/metabolismo , Raíces de Plantas/metabolismo
6.
Physiol Plant ; 175(1): e13837, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36461890

RESUMEN

Plants adapt to freezing stress through cold acclimation, which is induced by nonfreezing low temperatures and accompanied by growth arrest. A later increase in temperature after cold acclimation leads to rapid loss of freezing tolerance and growth resumption, a process called deacclimation. Appropriate regulation of the trade-off between freezing tolerance and growth is necessary for efficient plant development in a changing environment. The cell wall, which mainly consists of polysaccharide polymers, is involved in both freezing tolerance and growth. Still, it is unclear how the balance between freezing tolerance and growth is affected during cold acclimation and deacclimation by the changes in cell wall structure and what role is played by its monosaccharide composition. Therefore, to elucidate the regulatory mechanisms controlling freezing tolerance and growth during cold acclimation and deacclimation, we investigated cell wall changes in detail by sequential fractionation and monosaccharide composition analysis in the model plant Arabidopsis thaliana, for which a plethora of information and mutant lines are available. We found that arabinogalactan proteins and pectic galactan changed in close coordination with changes in freezing tolerance and growth during cold acclimation and deacclimation. On the other hand, arabinan and xyloglucan did not return to nonacclimation levels after deacclimation but stabilized at cold acclimation levels. This indicates that deacclimation does not completely restore cell wall composition to the nonacclimated state but rather changes it to a specific novel composition that is probably a consequence of the loss of freezing tolerance and provides conditions for growth resumption.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Congelación , Aclimatación/fisiología , Frío , Arabidopsis/metabolismo , Pared Celular/metabolismo , Monosacáridos/metabolismo , Proteínas de Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas
7.
Metabolomics ; 18(12): 95, 2022 11 19.
Artículo en Inglés | MEDLINE | ID: mdl-36409428

RESUMEN

INTRODUCTION: Plant cell walls play an important role in providing physical strength and defence against abiotic stress. Rice brittle culm (bc) mutants are a strength-decreased mutant because of abnormal cell walls, and it has been reported that the causative genes of bc mutants affect cell wall composition. However, the metabolic alterations in each organ of bc mutants have remained unknown. OBJECTIVES: To evaluate the metabolic changes in rice bc mutants, comparative analysis of the primary metabolites was conducted. METHODS: The primary metabolites in leaves, internodes, and nodes of rice bc mutants and wild-type control were measured using CE- and LC-MS/MS. Multivariate analyses using metabolomic data was performed. RESULTS: We found that mutations in each bc mutant had different effects on metabolism. For example, higher oxalate content was observed in bc3 and bc1 bc3 mutants, suggesting that surplus carbon that was not used for cell wall components might be used for oxalate synthesis. In addition, common metabolic alterations such as a decrease of sugar nucleotides in nodes were found in bc1 and Bc6, in which the causative genes are involved in cellulose accumulation. CONCLUSION: These results suggest that metabolic analysis of the bc mutants could elucidate the functions of causative gene and improve the cell wall components for livestock feed or bioethanol production.


Asunto(s)
Oryza , Oryza/genética , Oryza/metabolismo , Cromatografía Liquida , Metabolómica , Espectrometría de Masas en Tándem , Oxalatos/metabolismo
8.
J Biol Chem ; 295(52): 18539-18552, 2020 12 25.
Artículo en Inglés | MEDLINE | ID: mdl-33093171

RESUMEN

Arabinogalactan proteins (AGPs) are plant proteoglycans with functions in growth and development. However, these functions are largely unexplored, mainly because of the complexity of the sugar moieties. These carbohydrate sequences are generally analyzed with the aid of glycoside hydrolases. The exo-ß-1,3-galactanase is a glycoside hydrolase from the basidiomycete Phanerochaete chrysosporium (Pc1,3Gal43A), which specifically cleaves AGPs. However, its structure is not known in relation to its mechanism bypassing side chains. In this study, we solved the apo and liganded structures of Pc1,3Gal43A, which reveal a glycoside hydrolase family 43 subfamily 24 (GH43_sub24) catalytic domain together with a carbohydrate-binding module family 35 (CBM35) binding domain. GH43_sub24 is known to lack the catalytic base Asp conserved among other GH43 subfamilies. Our structure in combination with kinetic analyses reveals that the tautomerized imidic acid group of Gln263 serves as the catalytic base residue instead. Pc1,3Gal43A has three subsites that continue from the bottom of the catalytic pocket to the solvent. Subsite -1 contains a space that can accommodate the C-6 methylol of Gal, enabling the enzyme to bypass the ß-1,6-linked galactan side chains of AGPs. Furthermore, the galactan-binding domain in CBM35 has a different ligand interaction mechanism from other sugar-binding CBM35s, including those that bind galactomannan. Specifically, we noted a Gly → Trp substitution, which affects pyranose stacking, and an Asp → Asn substitution in the binding pocket, which recognizes ß-linked rather than α-linked Gal residues. These findings should facilitate further structural analysis of AGPs and may also be helpful in engineering designer enzymes for efficient biomass utilization.


Asunto(s)
Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Galactanos/metabolismo , Glicósido Hidrolasas/química , Glicósido Hidrolasas/metabolismo , Mananos/metabolismo , Phanerochaete/enzimología , Secuencia de Aminoácidos , Dominio Catalítico , Cristalografía por Rayos X , Galactosa/análogos & derivados , Homología de Secuencia , Especificidad por Sustrato
9.
Physiol Plant ; 173(3): 1244-1252, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34380178

RESUMEN

Cell-wall polysaccharides are synthesized from nucleotide sugars by glycosyltransferases. However, in what way the level of nucleotide sugars affects the structure of the polysaccharides is not entirely clear. guanosine diphosphate (GDP)-mannose (GDP-Man) is one of the major nucleotide sugars in plants and serves as a substrate in the synthesis of mannan polysaccharides. GDP-Man is synthesized from mannose 1-phosphate and GTP by a GDP-Man pyrophosphorylase, VITAMIN C DEFECTIVE1 (VTC1), which is positively regulated by the interacting protein KONJAC1 (KJC1) in Arabidopsis. Since seed-coat mucilage can serve as a model of the plant cell wall, we examined the influence of vtc1 and kjc1 mutations on the synthesis of mucilage galactoglucomannan. Sugar composition analysis showed that mannose content in adherent mucilage of kjc1 and vtc1 mutants was only 42% and 11% of the wild-type, respectively, indicating a drastic decrease of galactoglucomannan. On the other hand, structural analysis based on specific oligosaccharides released by endo-ß-1,4-mannanase indicated that galactoglucomannan had a patterned glucomannan backbone consisting of alternating residues of glucose and mannose and the frequency of α-galactosyl branches was also similar to the wild type structure. These results suggest that the structure of mucilage galactoglucomannan is mainly determined by properties of glycosyltransferases rather than the availability of nucleotide sugars.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Guanosina Difosfato Manosa , Mananos , Manosa , Polisacáridos , Semillas
10.
Int J Mol Sci ; 22(3)2021 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-33572987

RESUMEN

Glycosyltransferases (GTs) catalyze the synthesis of glycosidic linkages and are essential in the biosynthesis of glycans, glycoconjugates (glycolipids and glycoproteins), and glycosides. Plant genomes generally encode many more GTs than animal genomes due to the synthesis of a cell wall and a wide variety of glycosylated secondary metabolites. The Arabidopsis thaliana genome is predicted to encode over 573 GTs that are currently classified into 42 diverse families. The biochemical functions of most of these GTs are still unknown. In this study, we updated the JBEI Arabidopsis GT clone collection by cloning an additional 105 GT cDNAs, 508 in total (89%), into Gateway-compatible vectors for downstream characterization. We further established a functional analysis pipeline using transient expression in tobacco (Nicotiana benthamiana) followed by enzymatic assays, fractionation of enzymatic products by reversed-phase HPLC (RP-HPLC) and characterization by mass spectrometry (MS). Using the GT14 family as an exemplar, we outline a strategy for identifying effective substrates of GT enzymes. By addition of UDP-GlcA as donor and the synthetic acceptors galactose-nitrobenzodiazole (Gal-NBD), ß-1,6-galactotetraose (ß-1,6-Gal4) and ß-1,3-galactopentose (ß-1,3-Gal5) to microsomes expressing individual GT14 enzymes, we verified the ß-glucuronosyltransferase (GlcAT) activity of three members of this family (AtGlcAT14A, B, and E). In addition, a new family member (AT4G27480, 248) was shown to possess significantly higher activity than other GT14 enzymes. Our data indicate a likely role in arabinogalactan-protein (AGP) biosynthesis for these GT14 members. Together, the updated Arabidopsis GT clone collection and the biochemical analysis pipeline present an efficient means to identify and characterize novel GT catalytic activities.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Glicosiltransferasas/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Pared Celular/genética , Pared Celular/metabolismo , Genoma de Planta , Glicosiltransferasas/metabolismo , Mucoproteínas/genética , Mucoproteínas/metabolismo , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Especificidad por Sustrato
11.
J Exp Bot ; 71(18): 5414-5424, 2020 09 19.
Artículo en Inglés | MEDLINE | ID: mdl-32470141

RESUMEN

Arabinogalactan-proteins (AGPs) are a family of plant extracellular proteoglycans implicated in many physiological events. AGP is decorated with type II arabinogalactans (AGs) consisting of a ß-1,3-galactan backbone and ß-1,6-galactan side chains, to which other sugars are attached. Based on the fact that a type II AG-specific inhibitor, ß-Yariv reagent, perturbs growth and development, it has been proposed that type II AGs participate in the regulation of cell shape and tissue organization. However, the mechanisms by which type II AGs participate have not yet been established. Here, we describe a novel system that causes specific degradation of type II AGs in Arabidopsis, by which a gene encoding a fungal exo-ß-1,3-galactanase that specifically hydrolyzes ß-1,3-galactan backbones of type II AGs is expressed under the control of a dexamethasone-inducible promoter. Dexamethasone treatment increased the galactanase activity, leading to a decrease in Yariv reagent-reactive AGPs in transgenic Arabidopsis. We detected the typical oligosaccharides released from type II AGs by Il3GAL in the soluble fraction, demonstrating that Il3GAL acted on type II AG in the transgenic plants. Additionally, this resulted in severe tissue disorganization in the hypocotyl and cotyledons, suggesting that the degradation of type II AGs affected the regulation of cell shape.


Asunto(s)
Arabidopsis , Arabidopsis/genética , Forma de la Célula , Galactanos , Mucoproteínas , Oligosacáridos
12.
Plant Physiol ; 178(3): 1011-1026, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30185440

RESUMEN

The interaction between mannan polysaccharides and cellulose microfibrils contributes to cell wall properties in some vascular plants, but the molecular arrangement of mannan in the cell wall and the nature of the molecular bonding between mannan and cellulose remain unknown. Previous studies have shown that mannan is important in maintaining Arabidopsis (Arabidopsis thaliana) seed mucilage architecture, and that Cellulose Synthase-Like A2 (CSLA2) synthesizes a glucomannan backbone, which Mannan α-Galactosyl Transferase1 (MAGT1/GlycosylTransferase-Like6/Mucilage Related10) might decorate with single α-Gal branches. Here, we investigated the ratio and sequence of Man and Glc and the arrangement of Gal residues in Arabidopsis mucilage mannan using enzyme sequential digestion, carbohydrate gel electrophoresis, and mass spectrometry. We found that seed mucilage galactoglucomannan has a backbone consisting of the repeating disaccharide [4)-ß-Glc-(1,4)-ß-Man-(1,], and most of the Man residues in the backbone are substituted by single α-1,6-Gal. CSLA2 is responsible for the synthesis of this patterned glucomannan backbone and MAGT1 catalyses the addition of α-Gal. In vitro activity assays revealed that MAGT1 transferred α-Gal from UDP-Gal only to Man residues within the CSLA2 patterned glucomannan backbone acceptor. These results indicate that CSLAs and galactosyltransferases are able to make precisely defined galactoglucomannan structures. Molecular dynamics simulations suggested this patterned galactoglucomannan is able to bind stably to some hydrophilic faces and to hydrophobic faces of cellulose microfibrils. A specialization of the biosynthetic machinery to make galactoglucomannan with a patterned structure may therefore regulate the mode of binding of this hemicellulose to cellulose fibrils.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimología , Celulosa/metabolismo , Galactosiltransferasas/metabolismo , Glucosiltransferasas/metabolismo , Glicosiltransferasas/metabolismo , Mananos/química , Arabidopsis/química , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Pared Celular/metabolismo , Galactosiltransferasas/genética , Glucosiltransferasas/genética , Glicosiltransferasas/genética , Mananos/metabolismo , Mucílago de Planta/química , Mucílago de Planta/metabolismo , Polisacáridos/metabolismo , Semillas/química , Semillas/enzimología , Semillas/genética
13.
Appl Microbiol Biotechnol ; 103(3): 1299-1310, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30564851

RESUMEN

Type II arabinogalactan (AG) is a soluble prebiotic fiber stimulating the proliferation of bifidobacteria in the human gut. Larch AG, which is comprised of type II AG, is known to be utilized as an energy source for Bifidobacterium longum subsp. longum (B. longum). We have previously characterized GH43_24 exo-ß-1,3-galactanase (Bl1,3Gal) for the degradation of type II AG main chains in B. longum JCM1217. In this study, we characterized GH30_5 exo-ß-1,6-galactobiohydrolase (Bl1,6Gal) and GH43_22 α-L-arabinofuranosidase (BlArafA), which are degradative enzymes for type II AG side chains in cooperation with exo-ß-1,3-galactanase. The recombinant exo-ß-1,6-galactobiohydrolase specifically released ß-1,6-galactobiose (ß-1,6-Gal2) from the nonreducing terminal of ß-1,6-galactooligosaccharides, and the recombinant α-L-arabinofuranosidase released arabinofuranose (Araf) from α-1,3-Araf-substituted ß-1,6-galactooligosaccharides. ß-1,6-Gal2 was additively released from larch AG by the combined use of type II AG degradative enzymes, including Bl1,3Gal, Bl1,6Gal, and BlArafA. The gene cluster encoding the type II AG degradative enzymes is conserved in all B. longum strains, but not in other bifidobacterial species. The degradative enzymes for type II AG side chains are thought to be important for the acquisition of type II AG in B. longum.


Asunto(s)
Bifidobacterium longum/enzimología , Bifidobacterium longum/genética , Galactanos/metabolismo , Glicósido Hidrolasas/genética , beta-Galactosidasa/genética , Bifidobacterium longum/metabolismo , Microbioma Gastrointestinal/genética , Tracto Gastrointestinal/microbiología , Glicósido Hidrolasas/metabolismo , Humanos , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , beta-Galactosidasa/metabolismo
14.
Plant Physiol ; 175(3): 1094-1104, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28924016

RESUMEN

In the last three decades, more than 200 monoclonal antibodies have been raised against most classes of plant cell wall polysaccharides by different laboratories worldwide. These antibodies are widely used to identify differences in plant cell wall components in mutants, organ and tissue types, and developmental stages. Despite their importance and broad use, the precise binding epitope has been determined for only a few of these antibodies. Here, we use a plant glycan microarray equipped with 88 synthetic oligosaccharides to comprehensively map the epitopes of plant cell wall glycan-directed antibodies. Our results reveal the binding epitopes for 78 arabinogalactan-, rhamnogalacturonan-, xylan-, and xyloglucan-directed antibodies. We demonstrate that, with knowledge of the exact epitopes recognized by individual antibodies, specific glycosyl hydrolases can be implemented into immunological cell wall analyses, providing a framework to obtain structural information on plant cell wall glycans with unprecedented molecular precision.


Asunto(s)
Anticuerpos Monoclonales/metabolismo , Brachypodium/metabolismo , Pared Celular/metabolismo , Mapeo Epitopo , Análisis por Micromatrices/métodos , Polisacáridos/metabolismo , Glicósido Hidrolasas/metabolismo , Coloración y Etiquetado
15.
Plant Cell ; 27(12): 3397-409, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26672069

RESUMEN

Humans are unable to synthesize l-ascorbic acid (AsA), yet it is required as a cofactor in many critical biochemical reactions. The majority of human dietary AsA is obtained from plants. In Arabidopsis thaliana, a GDP-mannose pyrophosphorylase (GMPP), VITAMIN C DEFECTIVE1 (VTC1), catalyzes a rate-limiting step in AsA synthesis: the formation of GDP-Man. In this study, we identified two nucleotide sugar pyrophosphorylase-like proteins, KONJAC1 (KJC1) and KJC2, which stimulate the activity of VTC1. The kjc1kjc2 double mutant exhibited severe dwarfism, indicating that KJC proteins are important for growth and development. The kjc1 mutation reduced GMPP activity to 10% of wild-type levels, leading to a 60% reduction in AsA levels. On the contrary, overexpression of KJC1 significantly increased GMPP activity. The kjc1 and kjc1kjc2 mutants also exhibited significantly reduced levels of glucomannan, which is also synthesized from GDP-Man. Recombinant KJC1 and KJC2 enhanced the GMPP activity of recombinant VTC1 in vitro, while KJCs did not show GMPP activity. Yeast two-hybrid assays suggested that the stimulation of GMPP activity occurs via interaction of KJCs with VTC1. These results suggest that KJCs are key factors for the generation of GDP-Man and affect AsA level and glucomannan accumulation through the stimulation of VTC1 GMPP activity.


Asunto(s)
Arabidopsis/genética , Ácido Ascórbico/metabolismo , Guanosina Difosfato Manosa/metabolismo , Mananos/metabolismo , Nucleotidiltransferasas/metabolismo , Vitaminas/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Pared Celular/metabolismo , Regulación de la Expresión Génica de las Plantas , Mutación , Nucleotidiltransferasas/genética , Filogenia , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Plantas Modificadas Genéticamente , Plantones/genética , Plantones/metabolismo
16.
Physiol Plant ; 162(1): 135-144, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-28862767

RESUMEN

We carried out a space experiment, denoted as Aniso Tubule, to examine the effects of microgravity on the growth anisotropy and cortical microtubule dynamics in Arabidopsis hypocotyls, using lines in which microtubules are visualized by labeling tubulin or microtubule-associated proteins (MAPs) with green fluorescent protein (GFP). In all lines, GFP-tubulin6 (TUB6)-, basic proline-rich protein1 (BPP1)-GFP- and spira1-like3 (SP1L3)-GFP-expressing using a constitutive promoter, and spiral2 (SPR2)-GFP- and GFP-65 kDa MAP-1 (MAP65-1)-expressing using a native promoter, the length of hypocotyls grown under microgravity conditions in space was longer than that grown at 1 g conditions on the ground. In contrast, the diameter of hypocotyls grown under microgravity conditions was smaller than that of the hypocotyls grown at 1 g. The percentage of cells with transverse microtubules was increased under microgravity conditions, irrespective of the lines. Also, the average angle of the microtubules with respect to the transverse cell axis was decreased in hypocotyls grown under microgravity conditions. When GFP fluorescence was quantified in hypocotyls of GFP-MAP65-1 and SPR2-GFP lines, microgravity increased the levels of MAP65-1, which appears to be involved in the maintenance of transverse microtubule orientation. However, the levels of SPR2 under microgravity conditions were comparable to those at 1 g. These results suggest that the microgravity-induced increase in the levels of MAP65-1 is involved in increase in the transverse microtubules, which may lead to modification of growth anisotropy, thereby developing longer and thinner hypocotyls under microgravity conditions in space.


Asunto(s)
Anisotropía , Arabidopsis/crecimiento & desarrollo , Medio Ambiente Extraterrestre , Hipocótilo/crecimiento & desarrollo , Microtúbulos/metabolismo , Ingravidez , Fluorescencia , Hipocótilo/anatomía & histología , Epidermis de la Planta/citología , Plantones/crecimiento & desarrollo
17.
J Plant Res ; 131(3): 565, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-29468321

RESUMEN

The article "Metabolism of L-arabinose in plants", written by "Toshihisa Kotake, Yukiko Yamanashi, Chiemi Imaizumi, Yoichi Tsumuraya", was originally published Online First without open access. After publication in volume129, issue 5, page 781-792 the Botanical Society of Japan decided to opt for Open Choice and to make the article an open access publication.

18.
Planta ; 246(1): 61-74, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28357539

RESUMEN

MAIN CONCLUSION: The screening of rice mutants with improved cellulose to glucose saccharification efficiency (SE) identifies reduced xylan and/or ferulic acid, and a qualitative change of lignin to impact SE. To ensure the availability of sustainable energy, considerable effort is underway to utilize lignocellulosic plant biomass as feedstock for the production of biofuels. However, the high cost of degrading plant cell wall components to fermentable sugars (saccharification) has been problematic. One way to overcome this barrier is to develop plants possessing cell walls that are amenable to saccharification. In this study, we aimed to identify new molecular factors that influence saccharification efficiency (SE) in rice. By screening 22 rice mutants, we identified two lines, 122 and 108, with improved SE. Reduced xylan and ferulic acid within the cell wall of line 122 were probable reasons of improved SE. Line 108 showed reduced levels of thioglycolic-released lignin; however, the amount of Klason lignin was comparable to the wild-type, indicating that structural changes had occurred in the 108 lignin polymer which resulted in improved SE. Positional cloning revealed that the genes responsible for improved SE in 122 and 108 were rice CONSTITUTIVE PHOTOMORPHOGENIC 1 (OsCOP1) and GOLD HULL AND INTERNODE 1 (GH1), respectively, which have not been previously reported to influence SE. The screening of mutants for improved SE is an efficient approach to identify novel genes that affect SE, which is relevant in the development of crops as biofuel sources.


Asunto(s)
Oryza/metabolismo , Proteínas de Plantas/metabolismo , Biomasa , Celulosa/metabolismo , Ácidos Cumáricos/metabolismo , Lignina/metabolismo , Oryza/genética , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo
19.
J Exp Bot ; 68(16): 4651-4661, 2017 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-28981776

RESUMEN

The major plant sugar l-arabinose (l-Ara) has two different ring forms, l-arabinofuranose (l-Araf) and l-arabinopyranose (l-Arap). Although l-Ara mainly appears in the form of α-l-Araf residues in cell wall components, such as pectic α-1,3:1,5-arabinan, arabinoxylan, and arabinogalactan-proteins (AGPs), lesser amounts of it can also be found as ß-l-Arap residues of AGPs. Even though AGPs are known to be rapidly metabolized, the enzymes acting on the ß-l-Arap residues remain to be identified. In the present study, four enzymes, which we call ß-l-ARAPASE (APSE) and α-GALACTOSIDASE 1 (AGAL1), AGAL2, and AGAL3, are identified as those enzymes that are likely to be responsible for the hydrolysis of the ß-l-Arap residues in Arabidopsis thaliana. An Arabidopsis apse-1 mutant showed significant reduction in ß-l-arabinopyranosidase activity, and an apse-1 agal3-1 double-mutant exhibited even less activity. The apse-1 and the double-mutants both had more ß-l-Arap residues in the cell walls than wild-type plants. Recombinant APSE expressed in the yeast Pichia pastoris specifically hydrolyzed ß-l-Arap residues and released l-Ara from gum arabic and larch arabinogalactan. The recombinant AGAL3 also showed weak ß-l-arabinopyranosidase activity beside its strong α-galactosidase activity. It appears that the ß-l-Arap residues of AGPs are hydrolysed mainly by APSE and partially by AGALs in Arabidopsis.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , alfa-Galactosidasa/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Arabinosa/análogos & derivados , Arabinosa/metabolismo , Pared Celular/genética , Pared Celular/metabolismo , Glicósido Hidrolasas/genética , Glicósido Hidrolasas/metabolismo , Hidrólisis , Hipocótilo/genética , Hipocótilo/crecimiento & desarrollo , Mutación , Filogenia , Pichia/genética , Plantas Modificadas Genéticamente , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Especificidad por Sustrato , alfa-Galactosidasa/genética
20.
Physiol Plant ; 161(2): 285-293, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28573759

RESUMEN

We investigated the effects of microgravity environment on growth and plant hormone levels in dark-grown rice shoots cultivated in artificial 1 g and microgravity conditions on the International Space Station (ISS). Growth of microgravity-grown shoots was comparable to that of 1 g-grown shoots. Endogenous levels of indole-3-acetic acid (IAA) in shoots remained constant, while those of abscisic acid (ABA), jasmonic acid (JA), cytokinins (CKs) and gibberellins (GAs) decreased during the cultivation period under both conditions. The levels of auxin, ABA, JA, CKs and GAs in rice shoots grown under microgravity conditions were comparable to those under 1 g conditions. These results suggest microgravity environment in space had minimal impact on levels of these plant hormones in rice shoots, which may be the cause of the persistence of normal growth of shoots under microgravity conditions. Concerning ethylene, the expression level of a gene for 1-aminocyclopropane-1-carboxylic acid (ACC) synthase, the key enzyme in ethylene biosynthesis, was reduced under microgravity conditions, suggesting that microgravity may affect the ethylene production. Therefore, ethylene production may be responsive to alterations of the gravitational force.


Asunto(s)
Oryza/fisiología , Reguladores del Crecimiento de las Plantas/metabolismo , Brotes de la Planta/crecimiento & desarrollo , Ingravidez , Expresión Génica , Ácidos Indolacéticos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA