Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Am J Physiol Renal Physiol ; 323(3): F255-F271, 2022 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-35834274

RESUMEN

Acute kidney injury (AKI) is common in critically ill patients, and sepsis is its leading cause. Sepsis-associated AKI (SA-AKI) causes greater morbidity and mortality than other AKI etiologies, yet the underlying mechanisms are incompletely understood. Metabolomic technologies can characterize cellular energy derangements, but few discovery analyses have evaluated the metabolomic profile of SA-AKI. To identify metabolic derangements amenable to therapeutic intervention, we assessed plasma and urine metabolites in septic mice and critically ill children and compared them by AKI status. Metabolites related to choline and central carbon metabolism were differentially abundant in SA-AKI in both mice and humans. Gene expression of enzymes related to choline metabolism was altered in the kidneys and liver of mice with SA-AKI. Treatment with intraperitoneal choline improved renal function in septic mice. Because pediatric patients with sepsis displayed similar metabolomic profiles to septic mice, choline supplementation may attenuate pediatric septic AKI.NEW & NOTEWORTHY Altered choline metabolism plays a role in both human and murine sepsis-associated acute kidney injury (SA-AKI), and choline administration in experimental SA-AKI improved renal function. These findings indicate that 1) mouse models can help interrogate clinically relevant mechanisms and 2) choline supplementation may ameliorate human SA-AKI. Future research will investigate clinically the impact of choline supplementation on human renal function in sepsis and, using model systems, how choline mediates its effects.


Asunto(s)
Lesión Renal Aguda , Sepsis , Lesión Renal Aguda/tratamiento farmacológico , Lesión Renal Aguda/etiología , Lesión Renal Aguda/metabolismo , Animales , Niño , Colina/metabolismo , Enfermedad Crítica , Suplementos Dietéticos , Humanos , Riñón/metabolismo , Ratones , Sepsis/complicaciones , Sepsis/tratamiento farmacológico
2.
Am J Physiol Renal Physiol ; 320(5): F984-F1000, 2021 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-33843271

RESUMEN

Sepsis-associated acute kidney injury (SA-AKI) is a significant problem in the critically ill that causes increased death. Emerging understanding of this disease implicates metabolic dysfunction in its pathophysiology. This study sought to identify specific metabolic pathways amenable to potential therapeutic intervention. Using a murine model of sepsis, blood and tissue samples were collected for assessment of systemic inflammation, kidney function, and renal injury. Nuclear magnetic resonance (NMR)-based metabolomics quantified dozens of metabolites in serum and urine that were subsequently submitted to pathway analysis. Kidney tissue gene expression analysis confirmed the implicated pathways. Septic mice had elevated circulating levels of inflammatory cytokines and increased levels of blood urea nitrogen and creatinine, indicating both systemic inflammation and poor kidney function. Renal tissue showed only mild histological evidence of injury in sepsis. NMR metabolomic analysis identified the involvement of mitochondrial pathways associated with branched-chain amino acid metabolism, fatty acid oxidation, and de novo NAD+ biosynthesis in SA-AKI. Renal cortical gene expression of enzymes associated with those pathways was predominantly suppressed. Renal cortical fatty acid oxidation rates were lower in septic mice with high inflammation, and this correlated with higher serum creatinine levels. Similar to humans, septic mice demonstrated renal dysfunction without significant tissue disruption, pointing to metabolic derangement as an important contributor to SA-AKI pathophysiology. Metabolism of branched-chain amino acid and fatty acids and NAD+ synthesis, which all center on mitochondrial function, appeared to be suppressed. Developing interventions to activate these pathways may provide new therapeutic opportunities for SA-AKI.NEW & NOTEWORTHY NMR-based metabolomics revealed disruptions in branched-chain amino acid metabolism, fatty acid oxidation, and NAD+ synthesis in sepsis-associated acute kidney injury. These pathways represent essential processes for energy provision in renal tubular epithelial cells and may represent targetable mechanisms for therapeutic intervention.


Asunto(s)
Lesión Renal Aguda/sangre , Lesión Renal Aguda/orina , Imagen por Resonancia Magnética/métodos , Metabolómica/métodos , Mitocondrias/metabolismo , Sepsis/complicaciones , Animales , Biomarcadores/sangre , Nitrógeno de la Urea Sanguínea , Creatinina/sangre , Citocinas/genética , Citocinas/metabolismo , Regulación de la Expresión Génica , Inflamación/sangre , Inflamación/metabolismo , Inflamación/orina , Masculino , Ratones , Ratones Endogámicos C57BL
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA