Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Development ; 147(6)2020 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-32108023

RESUMEN

Members of the Iroquois B (IrxB) homeodomain cluster genes, specifically Irx3 and Irx5, are crucial for heart, limb and bone development. Recently, we reported their importance for oocyte and follicle survival within the developing ovary. Irx3 and Irx5 expression begins after sex determination in the ovary but remains absent in the fetal testis. Mutually antagonistic molecular signals ensure ovary versus testis differentiation with canonical Wnt/ß-catenin signals paramount for promoting the ovary pathway. Notably, few direct downstream targets have been identified. We report that Wnt/ß-catenin signaling directly stimulates Irx3 and Irx5 transcription in the developing ovary. Using in silico analysis of ATAC- and ChIP-Seq databases in conjunction with mouse gonad explant transfection assays, we identified TCF/LEF-binding sequences within two distal enhancers of the IrxB locus that promote ß-catenin-responsive ovary expression. Meanwhile, Irx3 and Irx5 transcription is suppressed within the developing testis by the presence of H3K27me3 on these same sites. Thus, we resolved sexually dimorphic regulation of Irx3 and Irx5 via epigenetic and ß-catenin transcriptional control where their ovarian presence promotes oocyte and follicle survival vital for future ovarian health.


Asunto(s)
Epigénesis Genética/fisiología , Gónadas/embriología , Proteínas de Homeodominio/genética , Factores de Transcripción/genética , Vía de Señalización Wnt/fisiología , beta Catenina/metabolismo , Animales , Diferenciación Celular/genética , Células Cultivadas , Embrión de Mamíferos , Femenino , Regulación del Desarrollo de la Expresión Génica , Gónadas/metabolismo , Proteínas de Homeodominio/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos ICR , Ratones Transgénicos , Ovario/embriología , Ovario/metabolismo , Caracteres Sexuales , Diferenciación Sexual/genética , Testículo/embriología , Testículo/metabolismo , Factores de Transcripción/metabolismo
2.
PLoS Genet ; 16(6): e1008810, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32497091

RESUMEN

Urogenital tract abnormalities are among the most common congenital defects in humans. Male urogenital development requires Hedgehog-GLI signaling and testicular hormones, but how these pathways interact is unclear. We found that Gli3XtJ mutant mice exhibit cryptorchidism and hypospadias due to local effects of GLI3 loss and systemic effects of testicular hormone deficiency. Fetal Leydig cells, the sole source of these hormones in developing testis, were reduced in numbers in Gli3XtJ testes, and their functional identity diminished over time. Androgen supplementation partially rescued testicular descent but not hypospadias in Gli3XtJ mutants, decoupling local effects of GLI3 loss from systemic effects of androgen insufficiency. Reintroduction of GLI3 activator (GLI3A) into Gli3XtJ testes restored expression of Hedgehog pathway and steroidogenic genes. Together, our results show a novel function for the activated form of GLI3 that translates Hedgehog signals to reinforce fetal Leydig cell identity and stimulate timely INSL3 and testosterone synthesis in the developing testis. In turn, exquisite timing and concentrations of testosterone are required to work alongside local GLI3 activity to control development of a functionally integrated male urogenital tract.


Asunto(s)
Criptorquidismo/genética , Regulación del Desarrollo de la Expresión Génica , Células Intersticiales del Testículo/patología , Proteínas del Tejido Nervioso/metabolismo , Diferenciación Sexual/genética , Proteína Gli3 con Dedos de Zinc/metabolismo , Animales , Criptorquidismo/patología , Modelos Animales de Enfermedad , Proteínas Hedgehog/metabolismo , Humanos , Insulina/metabolismo , Células Intersticiales del Testículo/metabolismo , Masculino , Ratones , Ratones Transgénicos , Mutación , Proteínas del Tejido Nervioso/genética , Proteínas/metabolismo , Transducción de Señal/genética , Testosterona/metabolismo , Proteína Gli3 con Dedos de Zinc/genética
3.
Nucleic Acids Res ; 41(15): 7332-43, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23761438

RESUMEN

Base excision repair (BER) and mismatch repair (MMR) pathways play an important role in modulating cis-Diamminedichloroplatinum (II) (cisplatin) cytotoxicity. In this article, we identified a novel mechanistic role of both BER and MMR pathways in mediating cellular responses to cisplatin treatment. Cells defective in BER or MMR display a cisplatin-resistant phenotype. Targeting both BER and MMR pathways resulted in no additional resistance to cisplatin, suggesting that BER and MMR play epistatic roles in mediating cisplatin cytotoxicity. Using a DNA Polymerase ß (Polß) variant deficient in polymerase activity (D256A), we demonstrate that MMR acts downstream of BER and is dependent on the polymerase activity of Polß in mediating cisplatin cytotoxicity. MSH2 preferentially binds a cisplatin interstrand cross-link (ICL) DNA substrate containing a mismatch compared with a cisplatin ICL substrate without a mismatch, suggesting a novel mutagenic role of Polß in activating MMR in response to cisplatin. Collectively, these results provide the first mechanistic model for BER and MMR functioning within the same pathway to mediate cisplatin sensitivity via non-productive ICL processing. In this model, MMR participation in non-productive cisplatin ICL processing is downstream of BER processing and dependent on Polß misincorporation at cisplatin ICL sites, which results in persistent cisplatin ICLs and sensitivity to cisplatin.


Asunto(s)
Cisplatino/farmacología , Reparación de la Incompatibilidad de ADN , Reparación del ADN , Epistasis Genética , Regulación Neoplásica de la Expresión Génica , Antineoplásicos/farmacología , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Reactivos de Enlaces Cruzados/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Activación Enzimática , Humanos , Proteína 2 Homóloga a MutS/genética , Proteína 2 Homóloga a MutS/metabolismo , Mapeo de Interacción de Proteínas , ARN Polimerasa II/genética , ARN Polimerasa II/metabolismo , Pruebas de Toxicidad
4.
Exp Cell Res ; 318(16): 1973-86, 2012 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-22721696

RESUMEN

Chromatin remodeling complex SWI/SNF plays important roles in many cellular processes including transcription, proliferation, differentiation and DNA repair. In this report, we investigated the role of SWI/SNF catalytic subunits Brg1 and Brm in the cellular response to cisplatin in lung cancer and head/neck cancer cells. Stable knockdown of Brg1 and Brm enhanced cellular sensitivity to cisplatin. Repair kinetics of cisplatin DNA adducts revealed that downregulation of Brg1 and Brm impeded the repair of both intrastrand adducts and interstrand crosslinks (ICLs). Cisplatin ICL-induced DNA double strand break repair was also decreased in Brg1 and Brm depleted cells. Altered checkpoint activation with enhanced apoptosis as well as impaired chromatin relaxation was observed in Brg1 and Brm deficient cells. Downregulation of Brg1 and Brm did not affect the recruitment of DNA damage recognition factor XPC to cisplatin DNA lesions, but affected ERCC1 recruitment, which is involved in the later stages of DNA repair. Based on these results, we propose that SWI/SNF chromatin remodeling complex modulates cisplatin cytotoxicity by facilitating efficient repair of the cisplatin DNA lesions.


Asunto(s)
Antineoplásicos/farmacología , Proteínas Cromosómicas no Histona/antagonistas & inhibidores , Cisplatino/farmacología , ADN Helicasas/antagonistas & inhibidores , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Proteínas Nucleares/antagonistas & inhibidores , Factores de Transcripción/antagonistas & inhibidores , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Línea Celular Tumoral , Cromatina/efectos de los fármacos , Cromatina/genética , Cromatina/metabolismo , Ensamble y Desensamble de Cromatina/efectos de los fármacos , Ensamble y Desensamble de Cromatina/genética , Proteínas Cromosómicas no Histona/genética , Proteínas Cromosómicas no Histona/metabolismo , Aductos de ADN/genética , ADN Helicasas/genética , ADN Helicasas/metabolismo , Reparación del ADN , Proteínas de Unión al ADN/antagonistas & inhibidores , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Endonucleasas/antagonistas & inhibidores , Endonucleasas/genética , Endonucleasas/metabolismo , Técnicas de Silenciamiento del Gen , Neoplasias de Cabeza y Cuello/tratamiento farmacológico , Neoplasias de Cabeza y Cuello/genética , Neoplasias de Cabeza y Cuello/metabolismo , Humanos , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Subunidades de Proteína/antagonistas & inhibidores , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , ARN Interferente Pequeño/genética , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
5.
Mutat Res ; 743-744: 44-52, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23219605

RESUMEN

Many bifunctional alkylating agents and anticancer drugs exert their cytotoxicity by producing cross links between the two complementary strands of DNA, termed interstrand crosslinks (ICLs). This blocks the strand separating processes during DNA replication and transcription, which can lead to cell cycle arrest and apoptosis. Cells use multiple DNA repair systems to eliminate the ICLs. Concerted action of repair proteins involved in Nucleotide Excision Repair and Homologous Recombination pathways are suggested to play a key role in the ICL repair. However, recent studies indicate a possible role for Base Excision Repair (BER) in mediating the cytotoxicity of ICL inducing agents in mammalian cells. Elucidating the mechanism of BER mediated modulation of ICL repair would help in understanding the recognition and removal of ICLs and aid in the development of potential therapeutic agents. In this review, the influence of BER proteins on ICL DNA repair and the possible mechanisms of action are discussed.


Asunto(s)
Reactivos de Enlaces Cruzados/farmacología , Reparación del ADN , Animales , Daño del ADN , Replicación del ADN/efectos de los fármacos , Replicación del ADN/genética , Humanos , Recombinación Genética/efectos de los fármacos , Recombinación Genética/genética
6.
J Biol Chem ; 286(16): 14564-74, 2011 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-21357694

RESUMEN

Using isogenic mouse embryonic fibroblasts and human cancer cell lines, we show that cells defective in base excision repair (BER) display a cisplatin-specific resistant phenotype. This was accompanied by enhanced repair of cisplatin interstrand cross-links (ICLs) and ICL-induced DNA double strand breaks, but not intrastrand adducts. Cisplatin induces abasic sites with a reduced accumulation in uracil DNA glycosylase (UNG) null cells. We show that cytosines that flank the cisplatin ICLs undergo preferential oxidative deamination in vitro, and AP endonuclease 1 (APE1) can cleave the resulting ICL DNA substrate following removal of the flanking uracil. We also show that DNA polymerase ß has low fidelity at the cisplatin ICL site after APE1 incision. Down-regulating ERCC1-XPF in BER-deficient cells restored cisplatin sensitivity. Based on our results, we propose a novel model in which BER plays a positive role in maintaining cisplatin cytotoxicity by competing with the productive cisplatin ICL DNA repair pathways.


Asunto(s)
Antineoplásicos/farmacología , Cisplatino/farmacología , Reparación del ADN/efectos de los fármacos , Animales , Antineoplásicos/química , Sitios de Unión , Línea Celular Tumoral , Cisplatino/química , Reactivos de Enlaces Cruzados/química , Aductos de ADN , Daño del ADN , ADN Polimerasa Dirigida por ADN/química , Resistencia a Medicamentos , Humanos , Cinética , Ratones , Uracil-ADN Glicosidasa/química
7.
Endocrinology ; 162(7)2021 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-33784378

RESUMEN

Two specialized functions of cholesterol during fetal development include serving as a precursor to androgen synthesis and supporting hedgehog (HH) signaling activity. Androgens are produced by the testes to facilitate masculinization of the fetus. Recent evidence shows that intricate interactions between the HH and androgen signaling pathways are required for optimal male sex differentiation and defects of either can cause birth anomalies indicative of 46,XY male variations of sex development (VSD). Further, perturbations in cholesterol synthesis can cause developmental defects, including VSD, that phenocopy those caused by disrupted androgen or HH signaling, highlighting the functional role of cholesterol in promoting male sex differentiation. In this review, we focus on the role of cholesterol in systemic androgen and local HH signaling events during fetal masculinization and their collective contributions to pediatric VSD.


Asunto(s)
Andrógenos/biosíntesis , Colesterol/fisiología , Proteínas Hedgehog/metabolismo , Diferenciación Sexual/fisiología , Transducción de Señal/fisiología , Animales , Colesterol/biosíntesis , Trastornos del Desarrollo Sexual , Desarrollo Fetal/fisiología , Feto/metabolismo , Humanos , Células Intersticiales del Testículo/fisiología , Masculino , Testículo/embriología , Testículo/metabolismo
8.
Mol Cell Endocrinol ; 531: 111265, 2021 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-33864885

RESUMEN

STARD1 stimulates cholesterol transfer to mitochondrial CYP11A1 for conversion to pregnenolone. A cholesterol-binding START domain is guided by an N-terminal domain in a cell selective manner. Fetal and adult Leydig cells (FLC, ALC) show distinct Stard1 regulation. sm- FISH microscopy, which resolves individual molecules of Stard1 mRNA, shows uniformly high basal expression in each FLC. In ALC, in vivo, and cultured MA-10 cells, basal Stard1 expression is minimal. PKA activates loci asynchronously, with delayed splicing/export of 3.5 kb mRNA to mitochondria. After 60 min, ALC transition to an integrated mRNA delivery to mitochondria that is seen in FLC. Sertoli cells cooperate in Stard1 stimulation in FLC by delivering DHH to the primary cilium. There PTCH, SMO and cholesterol cooperate to release GLI3 to activate the Stard1 locus, probably by directing histone changes. ALC lack cilia. PKA then primes locus activation. FLC and ALC share similar SIK/CRTC/CREB regulation characterized for adrenal cells.


Asunto(s)
Cilios/metabolismo , Proteínas Hedgehog/metabolismo , Células Intersticiales del Testículo/fisiología , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Empalme Alternativo , Animales , Células COS , Línea Celular , Chlorocebus aethiops , Regulación del Desarrollo de la Expresión Génica , Humanos , Hibridación Fluorescente in Situ , Masculino , Fosfoproteínas/química , Dominios Proteicos , Transducción de Señal , Imagen Individual de Molécula
9.
Lab Chip ; 20(1): 107-119, 2020 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-31712791

RESUMEN

Open microfluidic cell culture systems are powerful tools for interrogating biological mechanisms. We have previously presented a microscale cell culture system, based on spontaneous capillary flow of biocompatible hydrogels, that is integrated into a standard cell culture well plate, with flexible cell compartment geometries and easy pipet access. Here, we present two new injection molded open microfluidic devices that also easily insert into standard cell culture well plates and standard culture workflows, allowing seamless adoption by biomedical researchers. These platforms allow culture and study of soluble factor communication among multiple cell types, and the microscale dimensions are well-suited for rare primary cells. Unique advances include optimized evaporation control within the well, manufacture with reproducible and cost-effective rapid injection molding, and compatibility with sample preparation workflows for high resolution microscopy (following well-established coverslip mounting procedures). In this work, we present several use cases that highlight the usability and widespread utility of our platform including culture of limited primary testis cells from surgical patients, microscopy readouts including immunocytochemistry and single molecule fluorescence in situ hybridization (smFISH), and coculture to study interactions between adipocytes and prostate cancer cells.


Asunto(s)
Dispositivos Laboratorio en un Chip , Testículo/citología , Supervivencia Celular , Células Cultivadas , Técnicas de Cocultivo , Humanos , Inmunohistoquímica , Hibridación Fluorescente in Situ , Masculino
10.
DNA Repair (Amst) ; 35: 126-36, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26519826

RESUMEN

Mismatch repair (MMR) deficiency gives rise to cisplatin resistance and can lead to poor prognosis in cancers. Various models have been proposed to explain this low level of resistance caused due to loss of MMR proteins. We have shown that MMR proteins are required to maintain cisplatin interstrand cross-links (ICLs) on the DNA leading to increased cellular sensitivity. In our previous studies, we have shown that BER processing of the cisplatin ICLs is mutagenic. Polymerase ß (Polß) can generate mismatches which leads to the activation and the recruitment of mismatch repair proteins. In this paper, we distinguished between the requirement of different downstream MMR proteins for maintaining cisplatin sensitivity. We show that the MutSα (MSH2-MSH6) heterocomplex is required to maintain cisplatin sensitivity, whereas the Mutsß complex has no effect. These results can be correlated with the increased repair of cisplatin ICLs and ICL induced DNA double strand breaks (DSBs) in the resistant cells. Moreover, we show that MLH1 proficient cells displayed a cisplatin sensitive phenotype when compared with the MLH1 deficient cells and the ATPase activity of MLH1 is essential to mediate this effect. Based on these results, we propose that MutSα as well as the downstream MMR pathway proteins are essential to maintain a cisplatin sensitive phenotype as a consequence of processing Polß induced mismatches at sites flanking cisplatin ICLs.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Antineoplásicos/farmacología , Cisplatino/farmacología , Reactivos de Enlaces Cruzados/farmacología , Reparación de la Incompatibilidad de ADN , Proteínas de Unión al ADN/metabolismo , Resistencia a Antineoplásicos , Proteínas Nucleares/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Línea Celular Tumoral , Roturas del ADN de Doble Cadena , Proteínas de Unión al ADN/genética , Técnicas de Silenciamiento del Gen , Humanos , Ratones , Homólogo 1 de la Proteína MutL , Proteína 2 Homóloga a MutS/genética , Proteína 2 Homóloga a MutS/metabolismo , Proteínas Nucleares/genética
11.
Front Genet ; 3: 138, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22891072

RESUMEN

Cell surface proteins are internalized into the cell through endocytosis and either degraded within lysosomes or recycled back to the plasma membrane. While perturbations in endosomal internalization are known to modulate renal function, it is not known whether similar alterations in recycling affect renal function. Rififylin is a known regulator of endocytic recycling with E3 ubiquitin protein ligase activity. In this study, using two genetically similar strains, the Dahl Salt-sensitive rat and an S.LEW congenic strain, which had allelic variants within a < 330 kb segment containing rififylin, we tested the hypothesis that alterations in endosomal recycling affect renal function. The congenic strain had 1.59-fold higher renal expression of rififylin. Transcriptome analysis indicated that components of both endocytosis and recycling were upregulated in the congenic strain. Transcription of Atp1a1 and cell surface content of the protein product of Atp1a1, the alpha subunit of Na(+)K(+)ATPase were increased in the proximal tubules from the congenic strain. Because rififylin does not directly regulate endocytosis and it is also a differentially expressed gene within the congenic segment, we reasoned that the observed alterations in the transcriptome of the congenic strain constitute a feedback response to the primary functional alteration of recycling caused by rififylin. To test this, recycling of transferrin was studied in isolated proximal tubules. Recycling was significantly delayed within isolated proximal tubules of the congenic strain, which also had a higher level of polyubiquitinated proteins and proteinuria compared with S. These data provide evidence to suggest that delayed endosomal recycling caused by excess of rififylin indirectly affects endocytosis, enhances intracellular protein polyubiquitination and contributes to proteinuria.

12.
DNA Repair (Amst) ; 9(7): 745-53, 2010 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-20418188

RESUMEN

Bulky cisplatin lesions are repaired primarily by nucleotide excision repair (NER), in which the structure specific endonuclease XPF-ERCC1 is a critical component. It is now known that the XPF-ERCC1 complex has repair functions beyond NER and plays a role in homologous recombination (HR). It has been suggested that expression of ERCC1 correlates with cisplatin drug resistance in non-small cell lung cancer (NSCLC). In our study, using NSCLC, ovarian, and breast cancer cells, we show that the XPF-ERCC1 complex is a valid target to increase cisplatin cytotoxicity and efficacy. We targeted XPF-ERCC1 complex by RNA interference and assessed the repair capacity of cisplatin intrastrand and interstrand crosslinks by ELISA and alkaline comet assay, respectively. We also assessed the repair of cisplatin-ICL-induced double-strand breaks (DSBs) by monitoring gamma-H2AX focus formation. Interestingly, XPF protein levels were significantly reduced following ERCC1 downregulation, but the converse was not observed. The transcript levels were unaffected suggesting that XPF protein stability is likely affected. The repair of both types of cisplatin-DNA lesions was decreased with downregulation of XPF, ERCC1 or both XPF-ERCC1. The ICL-induced DSBs persist in the absence of XPF-ERCC1. The suppression of the XPF-ERCC1 complex significantly decreases the cellular viability which correlates well with the decrease in DNA repair capacity. A double knockdown of XPF-ERCC1 displays the greatest level of cellular cytotoxicity when compared with XPF or ERCC1 alone. The difference in cytotoxicity observed is likely due to the level of total protein complex remaining. These data demonstrate that XPF-ERCC1 is a valid target to enhance cisplatin efficacy in cancer cells by affecting cisplatin-DNA repair pathways.


Asunto(s)
Antineoplásicos/farmacología , Cisplatino/farmacología , Proteínas de Unión al ADN/antagonistas & inhibidores , Resistencia a Antineoplásicos , Endonucleasas/antagonistas & inhibidores , Neoplasias/metabolismo , Línea Celular Tumoral , Daño del ADN , Reparación del ADN/genética , Proteínas de Unión al ADN/genética , Regulación hacia Abajo , Endonucleasas/genética , Técnicas de Silenciamiento del Gen , Histonas/metabolismo , Humanos , ARN Interferente Pequeño/genética
13.
Cancer Res ; 69(15): 6307-14, 2009 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-19638578

RESUMEN

Alkylation chemotherapy has been a long-standing treatment protocol for human neoplasia. N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) is a direct-acting monofunctional alkylator. Temozolomide is a clinical chemotherapeutic equivalent requiring metabolic breakdown to the alkylating agent. Both chemicals have similar mechanistic efficacy against DNA mismatch repair-proficient tumor cells that lack expression of methylguanine methyltransferase. Clinically relevant concentrations of both agents affect replicating cells only after the first cell cycle. This phenomenon has been attributed to replication fork arrest at unrepaired O(6)-methyldeoxyguanine lesions mispaired with thymine during the first replication cycle. Here, we show, by several different approaches, that MNNG-treated tumor cells do not arrest within the second cell cycle. Instead, the population slowly traverses through mitosis without cytokinesis into a third cell cycle. The peak of both ssDNA and dsDNA breaks occurs at the height of the long mitotic phase. The majority of the population emerges from mitosis as multinucleated cells that subsequently undergo cell death. However, a very small proportion of cells, <1:45,000, survive to form new colonies. Taken together, these results indicate that multinucleation within the third cell cycle, rather than replication fork arrest within the second cell cycle, is the primary trigger for cell death. Importantly, multinucleation and cell death are consistently avoided by a small percentage of the population that continues to divide. This information should prove clinically relevant for the future design of enhanced cancer chemotherapeutics.


Asunto(s)
Antineoplásicos Alquilantes/farmacología , Ciclo Celular/efectos de los fármacos , Metilnitronitrosoguanidina/farmacología , Proteína Quinasa CDC2 , Ciclo Celular/genética , Ciclina B/metabolismo , Quinasas Ciclina-Dependientes , Reparación de la Incompatibilidad de ADN , Metilasas de Modificación del ADN/deficiencia , Enzimas Reparadoras del ADN/deficiencia , Relación Dosis-Respuesta a Droga , Células HeLa , Histonas/metabolismo , Humanos , Fosforilación , Proteínas Supresoras de Tumor/deficiencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA