Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Psychol Med ; 53(11): 5235-5245, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-36004510

RESUMEN

BACKGROUND: Altered cerebral blood flow (CBF) has been found in people at risk for psychosis, with first-episode psychosis (FEP) and with chronic schizophrenia (SCZ). Studies using arterial spin labelling (ASL) have shown reduction of cortical CBF and increased subcortical CBF in SCZ. Previous studies have investigated CBF using ASL in FEP, reporting increased CBF in striatum and reduced CBF in frontal cortex. However, as these people were taking antipsychotics, it is unclear whether these changes are related to the disorder or antipsychotic treatment and how they relate to treatment response. METHODS: We examined CBF in FEP free from antipsychotic medication (N = 21), compared to healthy controls (N = 22). Both absolute and relative-to-global CBF were assessed. We also investigated the association between baseline CBF and treatment response in a partially nested follow-up study (N = 14). RESULTS: There was significantly lower absolute CBF in frontal cortex (Cohen's d = 0.84, p = 0.009) and no differences in striatum or hippocampus. Whole brain voxel-wise analysis revealed widespread cortical reductions in absolute CBF in large cortical clusters that encompassed occipital, parietal and frontal cortices (Threshold-Free Cluster Enhancement (TFCE)-corrected <0.05). No differences were found in relative-to-global CBF in the selected region of interests and in voxel-wise analysis. Relative-to-global frontal CBF was correlated with percentage change in total Positive and Negative Syndrome Scale after antipsychotic treatment (r = 0.67, p = 0.008). CONCLUSIONS: These results show lower cortical absolute perfusion in FEP prior to starting antipsychotic treatment and suggest relative-to-global frontal CBF as assessed with magnetic resonance imaging could potentially serve as a biomarker for antipsychotic response.


Asunto(s)
Antipsicóticos , Trastornos Psicóticos , Esquizofrenia , Humanos , Antipsicóticos/farmacología , Antipsicóticos/uso terapéutico , Estudios de Seguimiento , Trastornos Psicóticos/diagnóstico por imagen , Trastornos Psicóticos/tratamiento farmacológico , Trastornos Psicóticos/patología , Esquizofrenia/diagnóstico por imagen , Esquizofrenia/tratamiento farmacológico , Esquizofrenia/patología , Circulación Cerebrovascular/fisiología , Imagen por Resonancia Magnética
2.
Mol Psychiatry ; 26(4): 1332-1345, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-31690805

RESUMEN

A leading hypothesis for schizophrenia and related psychotic disorders proposes that cortical brain disruption leads to subcortical dopaminergic dysfunction, which underlies psychosis in the majority of patients who respond to treatment. Although supported by preclinical findings that prefrontal cortical lesions lead to striatal dopamine dysregulation, the relationship between prefrontal structural volume and striatal dopamine function has not been tested in people with psychosis. We therefore investigated the in vivo relationship between striatal dopamine synthesis capacity and prefrontal grey matter volume in treatment-responsive patients with psychosis, and compared them to treatment non-responsive patients, where dopaminergic mechanisms are not thought to be central. Forty patients with psychosis across two independent cohorts underwent 18F-DOPA PET scans to measure dopamine synthesis capacity (indexed as the influx rate constant Kicer) and structural 3T MRI. The PET, but not MR, data have been reported previously. Structural images were processed using DARTEL-VBM. GLM analyses were performed in SPM12 to test the relationship between prefrontal grey matter volume and striatal Kicer. Treatment responders showed a negative correlation between prefrontal grey matter and striatal dopamine synthesis capacity, but this was not evident in treatment non-responders. Specifically, we found an interaction between treatment response, whole striatal dopamine synthesis capacity and grey matter volume in left (pFWE corr. = 0.017) and right (pFWE corr. = 0.042) prefrontal cortex. We replicated the finding in right prefrontal cortex in the independent sample (pFWE corr. = 0.031). The summary effect size was 0.82. Our findings are consistent with the long-standing hypothesis of dysregulation of the striatal dopaminergic system being related to prefrontal cortex pathology in schizophrenia, but critically also extend the hypothesis to indicate it can be applied to treatment-responsive schizophrenia only. This suggests that different mechanisms underlie the pathophysiology of treatment-responsive and treatment-resistant schizophrenia.


Asunto(s)
Dopamina , Trastornos Psicóticos , Dihidroxifenilalanina/análogos & derivados , Sustancia Gris/diagnóstico por imagen , Humanos , Imagen por Resonancia Magnética , Tomografía de Emisión de Positrones , Trastornos Psicóticos/diagnóstico por imagen
3.
Proc Natl Acad Sci U S A ; 114(41): 10984-10989, 2017 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-28973902

RESUMEN

Anesthesia-resistant memory (ARM) was described decades ago, but the mechanisms that underlie this protein synthesis-independent form of consolidated memory in Drosophila remain poorly understood. Whether the several signaling molecules, receptors, and synaptic proteins currently implicated in ARM operate in one or more pathways and how they function in the process remain unclear. We present evidence that Drk, the Drosophila ortholog of the adaptor protein Grb2, is essential for ARM within adult mushroom body neurons. Significantly, Drk signals engage the Rho kinase Drok, implicating dynamic cytoskeletal changes in ARM, and this is supported by reduced F-actin in the mutants and after pharmacological inhibition of Drok. Interestingly, Drk-Drok signaling appears independent of the function of Radish (Rsh), a protein long implicated in ARM, suggesting that the process involves at least two distinct molecular pathways. Based on these results, we propose that signaling pathways involved in structural plasticity likely underlie this form of translation-independent memory.


Asunto(s)
Actinas/metabolismo , Anestésicos/administración & dosificación , Citoesqueleto/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/fisiología , Memoria/fisiología , Quinasas Asociadas a rho/metabolismo , Animales , Animales Modificados Genéticamente/genética , Animales Modificados Genéticamente/metabolismo , Proteínas de Drosophila/genética , Drosophila melanogaster/efectos de los fármacos , Resistencia a Medicamentos , Memoria/efectos de los fármacos , Cuerpos Pedunculados/fisiología , Transducción de Señal , Quinasas Asociadas a rho/genética
4.
PeerJ ; 11: e15751, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37529214

RESUMEN

Introduction: The fast, intuitive and autonomous system 1 along with the slow, analytical and more logical system 2 constitute the dual system processing model of decision making. Whether acting independently or influencing each other both systems would, to an extent, rely on randomness in order to reach a decision. The role of randomness, however, would be more pronounced when arbitrary choices need to be made, typically engaging system 1. The present exploratory study aims to capture the expression of a possible innate randomness mechanism, as proposed by the authors, by trying to isolate system 1 and examine arbitrary decision making in autistic participants with high functioning Autism Spectrum Disorders (ASD). Methods: Autistic participants withhigh functioning ASD and an age and gender matched comparison group performed the random number generation task. The task was modified to limit the contribution of working memory and allow any innate randomness mechanisms expressed through system 1, to emerge. Results: Utilizing a standard analyses approach, the random number sequences produced by autistic individuals and the comparison group did not differ in their randomness characteristics. No significant differences were identified when the sequences were examined using a moving window approach. When machine learning was used, random sequences' features could discriminate the groups with relatively high accuracy. Conclusions: Our findings indicate the possibility that individual patterns during random sequence production could be consistent enough between groups to allow for an accurate discrimination between the autistic and the comparison group. In order to draw firm conclusions around innate randomness and further validate our experiment, our findings need to be replicated in a bigger sample.


Asunto(s)
Trastorno del Espectro Autista , Trastorno Autístico , Humanos , Trastorno del Espectro Autista/diagnóstico , Memoria a Corto Plazo
5.
J Psychopharmacol ; 37(8): 784-794, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37491833

RESUMEN

BACKGROUND: Resting state connectivity studies link ketamine's antidepressant effects with normalisation of the brain connectivity changes that are observed in depression. These changes, however, usually co-occur with improvement in depressive symptoms, making it difficult to attribute these changes to ketamine's effects per se. AIMS: Our aim is to examine the effects of ketamine in brain connectivity, 2 h after its administration in a cohort of volunteers with remitted depression. Any significant changes observed in this study could provide insight of ketamine's antidepressant mechanism as they are not accompanied by symptom changes. METHODS: In total, 35 participants with remitted depression (21 females, mean age = 28.5 years) participated in a double-blind, placebo-controlled study of ketamine (0.5 mg/kg) or saline. Resting state scans were acquired approximately 2 h after the ketamine infusion. Brain connectivity was examined using a seed-based approach (ventral striatum, amygdala, hippocampus, posterior cingulate cortex and subgenual anterior cingulate cortex (sgACC)) and a brain network analysis (independent component analysis). RESULTS: Decreased connectivity between the sgACC and the amygdala was observed approximately 2 h after the ketamine infusion, compared to placebo (pFWE < 0.05). The executive network presented with altered connectivity with different cortical and subcortical regions. Within the network, the left hippocampus and right amygdala had decreased connectivity (pFWE < 0.05). CONCLUSIONS: Our findings support a model whereby ketamine would change the connectivity of brain areas and networks that are important for cognitive processing and emotional regulation. These changes could also be an indirect indicator of the plasticity changes induced by the drug.


Asunto(s)
Ketamina , Femenino , Humanos , Adulto , Depresión/tratamiento farmacológico , Imagen por Resonancia Magnética , Encéfalo , Antidepresivos/farmacología , Antidepresivos/uso terapéutico
6.
PLoS One ; 18(9): e0290881, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37676862

RESUMEN

According to influential theories about mood, exposure to environments characterized by specific patterns of punishments and rewards could shape mood response to future stimuli. This raises the intriguing possibility that mood could be trained by exposure to controlled environments. The aim of the present study is to investigate experimental settings that increase resilience of mood to negative stimuli. For this study, a new task was developed where participants register their mood when rewards are added or subtracted from their score. The study was conducted online, using Amazon MTurk, and a total of N = 1287 participants were recruited for all three sets of experiments. In an exploratory experiment, sixteen different experimental task environments which are characterized by different mood-reward relationships, were tested. We identified six task environments that produce the greatest improvements in mood resilience to negative stimuli, as measured by decreased sensitivity to loss. In a next step, we isolated the two most effective task environments, from the previous set of experiments, and we replicated our results and tested mood's resilience to negative stimuli over time, in a novel sample. We found that the effects of the task environments on mood are detectable and remain significant after multiple task rounds (approximately two minutes) for an environment where good mood yielded maximum reward. These findings are a first step in our effort to better understand the mechanisms behind mood training and its potential clinical utility.


Asunto(s)
Afecto , Ambiente Controlado , Humanos , Felicidad , Castigo , Recompensa
7.
Front Neuroimaging ; 2: 1110258, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37554642

RESUMEN

Functional magnetic resonance imaging (fMRI) is a non-invasive technique that can be used to examine neural responses with and without the use of a functional task. Indeed, fMRI has been used in clinical trials and pharmacological research studies. In mental health, it has been used to identify brain areas linked to specific symptoms but also has the potential to help identify possible treatment targets. Despite fMRI's many advantages, such findings are rarely the primary outcome measure in clinical trials or research studies. This article reviews fMRI studies in depression that sought to assess the efficacy and mechanism of action of compounds with antidepressant effects. Our search results focused on selective serotonin reuptake inhibitors (SSRIs), the most commonly prescribed treatments for depression and ketamine, a fast-acting antidepressant treatment. Normalization of amygdala hyperactivity in response to negative emotional stimuli was found to underlie successful treatment response to SSRIs as well as ketamine, indicating a potential common pathway for both conventional and fast-acting antidepressants. Ketamine's rapid antidepressant effects make it a particularly useful compound for studying depression with fMRI; its effects on brain activity and connectivity trended toward normalizing the increases and decreases in brain activity and connectivity associated with depression. These findings highlight the considerable promise of fMRI as a tool for identifying treatment targets in depression. However, additional studies with improved methodology and study design are needed before fMRI findings can be translated into meaningful clinical trial outcomes.

8.
Prog Brain Res ; 278: 117-148, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37414490

RESUMEN

Imaging studies of treatment-resistant depression (TRD) have examined brain activity, structure, and metabolite concentrations to identify critical areas of investigation in TRD as well as potential targets for treatment interventions. This chapter provides an overview of the main findings of studies using three imaging modalities: structural magnetic resonance imaging (MRI), functional MRI (fMRI), and magnetic resonance spectroscopy (MRS). Decreased connectivity and metabolite concentrations in frontal brain areas appear to characterize TRD, although results are not consistent across studies. Treatment interventions, including rapid-acting antidepressants and transcranial magnetic stimulation (TMS), have shown some efficacy in reversing these changes while alleviating depressive symptoms. However, comparatively few TRD imaging studies have been conducted, and these studies often have relatively small sample sizes or employ different methods to examine a variety of brain areas, making it difficult to draw firm conclusions from imaging studies about the pathophysiology of TRD. Larger studies with more unified hypotheses, as well as data sharing, could help TRD research and spur better characterization of the illness, providing critical new targets for treatment intervention.


Asunto(s)
Encéfalo , Depresión , Humanos , Antidepresivos/farmacología , Antidepresivos/uso terapéutico , Encéfalo/diagnóstico por imagen , Imagen por Resonancia Magnética , Estimulación Magnética Transcraneal/métodos
9.
PeerJ ; 10: e13328, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35474689

RESUMEN

Background: Several theories in autism posit that common aspects of the autism phenotype may be manifestations of an underlying differentiation in predictive abilities. The present study investigates this hypothesis in the context of strategic decision making in autistic participants compared to a control group. Method: Autistic individuals (43 adults, 35 male) and a comparison group (42 adults, 35 male) of age and gender matched individuals, played a modified version of the prisoner's dilemma (PD) task where they were asked, if capable, to predict their opponents' move. The predictive performance of the two groups was assessed. Results: Overall, participants in the autism group had a significantly lower number of correct predictions. Moreover, autistic participants stated, significantly more frequently than the comparison group, that they were unable to make a prediction. When attempting a prediction however, the success ratio did not differ between the two groups. Conclusions: These findings indicate that there is a difference in prediction performance between the two groups. Although our task design does not allow us to identify whether this difference is due to difficulty to form a prediction or a reluctance in registering one, these findings could justify a role for prediction in strategic decision making during the PD task.


Asunto(s)
Trastorno Autístico , Masculino , Humanos , Trastorno Autístico/diagnóstico , Dilema del Prisionero , Toma de Decisiones
10.
PeerJ ; 10: e12829, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35174016

RESUMEN

The Prisoner's Dilemma (PD) is one of the most popular concepts amongst the scientific literature. The task is used in order to study different types of social interactions by giving participants the choice to defect or cooperate in a specific social setting/dilemma. This review focuses on the technical characteristics of the PD task as it is used in medical literature and describes how the different PD settings could influence the players' behaviour. We identify all the studies that have used the PD task in medical research with human participants and distinguish, following a heuristic approach, seven parameters that can differentiate a PD task, namely (a) the opponent parties' composition; (b) the type of the opponent as perceived by the players; (c) the interaction flow of the game; (d) the number of rounds; (e) the instructions narrative and options that are given to players; (f) the strategy and (g) the reward matrix and payoffs of the game. We describe how each parameter could influence the final outcome of the PD task and highlight the great variability concerning the settings of these parameters in medical research. Our aim is to point out the heterogeneity of such methods in the past literature and to assist future researchers with their methodology design.


Asunto(s)
Conducta Cooperativa , Dilema del Prisionero , Humanos , Recompensa , Interacción Social , Evolución Biológica
11.
Artículo en Inglés | MEDLINE | ID: mdl-34126264

RESUMEN

BACKGROUND: Ketamine as an antidepressant improves anhedonia as early as 2 hours after infusion. These drug effects are thought to be exerted via actions on reward-related brain areas-yet these actions remain largely unknown. Our study investigates ketamine's effects during the anticipation and receipt of an expected reward, after the psychotomimetic effects of ketamine have passed, when early antidepressant effects are reported. METHODS: We examined ketamine's effects during the anticipation and receipt of expected rewards on predefined brain areas, namely, the dorsal and ventral striatum, ventral tegmental area, amygdala, and insula. We recruited 37 male and female participants with remitted depression who were free from symptoms and antidepressant treatments at the time of the scan. Participants were scanned 2 hours after drug administration in a double-blind crossover design (ketamine: 0.5 mg/kg and placebo) while performing a monetary reward task. RESULTS: A significant main effect of ketamine was observed across all regions of interest during the anticipation and feedback phases of win and no-win trials. The drug effects were particularly prominent in the nucleus accumbens and putamen, which showed increased activation on the receipt of smaller rewards compared with neutral. The levels of (2R,6R)-hydroxynorketamine 2 hours after infusion significantly correlated with the activation observed in the ventral tegmental area for that contrast. CONCLUSIONS: These findings demonstrate that ketamine can produce detectable changes in reward-related brain areas 2 hours after infusion, which occur without symptom changes and support the idea that ketamine might improve reward-related symptoms via modulation of response to feedback.


Asunto(s)
Ketamina , Antidepresivos/farmacología , Antidepresivos/uso terapéutico , Encéfalo , Estudios Cruzados , Depresión/tratamiento farmacológico , Método Doble Ciego , Femenino , Humanos , Masculino , Recompensa
12.
Brain Neurosci Adv ; 5: 23982128211055426, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34805548

RESUMEN

Acute ketamine administration has been widely used in neuroimaging research to mimic psychosis-like symptoms. Within the last two decades, ketamine has also emerged as a potent, fast-acting antidepressant. The delayed effects of the drug, observed 2-48 h after a single infusion, are associated with marked improvements in depressive symptoms. At the systems' level, several studies have investigated the acute ketamine effects on brain activity and connectivity; however, several questions remain unanswered around the brain changes that accompany the drug's antidepressant effects and how these changes relate to the brain areas that appear with altered function and connectivity in depression. This review aims to address some of these questions by focusing on resting-state brain connectivity. We summarise the studies that have examined connectivity changes in treatment-naïve, depressed individuals and those studies that have looked at the acute and delayed effects of ketamine in healthy and depressed volunteers. We conclude that brain areas that are important for emotional regulation and reward processing appear with altered connectivity in depression whereas the default mode network presents with increased connectivity in depressed individuals compared to healthy controls. This finding, however, is not as prominent as the literature often assumes. Acute ketamine administration causes an increase in brain connectivity in healthy volunteers. The delayed effects of ketamine on brain connectivity vary in direction and appear to be consistent with the drug normalising the changes observed in depression. The limited number of studies however, as well as the different approaches for resting-state connectivity analysis make it very difficult to draw firm conclusions and highlight the importance of data sharing and larger future studies.

13.
Psychopharmacology (Berl) ; 235(7): 1875-1886, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29564482

RESUMEN

BACKGROUND: Aberrant glutamate neurotransmission, and in particular dysfunction of the N-methyl-D-aspartate receptor (NMDAR), has been implicated in psychiatric disorders and represents a novel therapeutic target. Low-dose administration of the NMDA antagonist ketamine in healthy volunteers elicits a strong blood oxygenation level dependent (BOLD) imaging signal that can be attenuated by pretreatment with single, therapeutically effective doses of marketed medicines interacting with the glutamate system. OBJECTIVE: To test the attenuation of the ketamine-induced BOLD signal by pretreatment with either a metabotropic glutamate receptor (mGluR) 2/3 or a mGluR2 agonist in healthy volunteers METHODS: We used a ketamine challenge pharmacological magnetic resonance imaging (phMRI) paradigm to assess the modulatory effects of single acute doses of LY2140023 (pomaglumetad methionil), the methionine prodrug of the mGluR2/3 agonist LY404039 (10, 40, and 160 mg; N = 16 subjects) and of LY2979165, and the alanine prodrug of the selective orthosteric mGluR2 agonist 2812223 (20 and 60 mg; N = 16 subjects). RESULTS: A reduction in the ketamine-evoked BOLD phMRI signal relative to placebo was observed at the highest doses tested of both LY2140023 and LY2979165. A relationship was observed between reduction of the BOLD signal and increasing plasma levels of 2812223 in the LY2979165 cohort. CONCLUSIONS: These results identify pharmacologically active doses of the group II mGluR agonist prodrugs LY2140023 and LY2979165 in humans. They also extend the classes of compounds that have been experimentally shown to reverse the ketamine-evoked phMRI signal in humans, further supporting the use of this method as a neuroimaging biomarker for assessing functional effects.


Asunto(s)
Aminoácidos/administración & dosificación , Agonistas de Aminoácidos Excitadores/administración & dosificación , Ketamina/administración & dosificación , Imagen por Resonancia Magnética/métodos , Profármacos/administración & dosificación , Receptores de Glutamato Metabotrópico/agonistas , Administración Oral , Adulto , Estudios de Cohortes , Estudios Cruzados , Método Doble Ciego , Voluntarios Sanos , Humanos , Infusiones Intravenosas , Ketamina/antagonistas & inhibidores , Masculino , Persona de Mediana Edad , Resultado del Tratamiento , Adulto Joven
14.
J Psychopharmacol ; 29(9): 1025-8, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26152321

RESUMEN

Ketamine produces effects in healthy humans that resemble the positive, negative and cognitive symptoms of schizophrenia. We investigated the effect of ketamine administration on brain activity as indexed by blood-oxygen-level-dependent (BOLD) signal change response, and its relationship to ketamine-induced subjective changes, including perceptual distortion. Thirteen healthy participants volunteered for the study. All underwent a 15-min functional MRI acquisition with a ketamine infusion commencing after 5 min (approx 0.26 mg/kg over 20s followed by an infusion of approx. 0.42 mg/kg/h). Following the scan, participants self-rated ketamine-induced effects using the Psychotomimetic States Inventory. Ketamine led to widespread cortical and subcortical increases in BOLD response (FWE-corrected p < 0.01). Self-rated perceptual distortions and delusional thoughts correlated with increased BOLD response in the paracentral lobule (FWE-corrected p < 0.01). The findings suggest that BOLD increases in parietal cortices reflect ketamine effects on circuits that contribute to its capacity to produce perceptual alterations and delusional interpretations.


Asunto(s)
Anestésicos Disociativos/administración & dosificación , Deluciones/inducido químicamente , Ketamina/administración & dosificación , Lóbulo Parietal/efectos de los fármacos , Distorsión de la Percepción/efectos de los fármacos , Adolescente , Adulto , Deluciones/sangre , Humanos , Imagen por Resonancia Magnética/métodos , Masculino , Persona de Mediana Edad , Oxígeno/sangre , Psicosis Inducidas por Sustancias/sangre , Esquizofrenia/sangre , Esquizofrenia/inducido químicamente , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA