Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Mol Cell ; 68(5): 860-871.e7, 2017 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-29220653

RESUMEN

DNA damage triggers chromatin remodeling by mechanisms that are poorly understood. The oncogene and chromatin remodeler ALC1/CHD1L massively decompacts chromatin in vivo yet is inactive prior to DNA-damage-mediated PARP1 induction. We show that the interaction of the ALC1 macrodomain with the ATPase module mediates auto-inhibition. PARP1 activation suppresses this inhibitory interaction. Crucially, release from auto-inhibition requires a poly-ADP-ribose (PAR) binding macrodomain. We identify tri-ADP-ribose as a potent PAR-mimic and synthetic allosteric effector that abrogates ATPase-macrodomain interactions, promotes an ungated conformation, and activates the remodeler's ATPase. ALC1 fragments lacking the regulatory macrodomain relax chromatin in vivo without requiring PARP1 activation. Further, the ATPase restricts the macrodomain's interaction with PARP1 under non-DNA damage conditions. Somatic cancer mutants disrupt ALC1's auto-inhibition and activate chromatin remodeling. Our data show that the NAD+-metabolite and nucleic acid PAR triggers ALC1 to drive chromatin relaxation. Modular allostery in this oncogene tightly controls its robust, DNA-damage-dependent activation.


Asunto(s)
Ensamble y Desensamble de Cromatina , Daño del ADN , ADN Helicasas/metabolismo , Proteínas de Unión al ADN/metabolismo , Neoplasias/enzimología , Poli(ADP-Ribosa) Polimerasa-1/metabolismo , Poli Adenosina Difosfato Ribosa/metabolismo , Regulación Alostérica , Sitios de Unión , Línea Celular Tumoral , ADN Helicasas/química , ADN Helicasas/genética , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/genética , Activación Enzimática , Humanos , Mutación , Neoplasias/genética , Neoplasias/patología , Conformación de Ácido Nucleico , Poli(ADP-Ribosa) Polimerasa-1/química , Poli(ADP-Ribosa) Polimerasa-1/genética , Poli ADP Ribosilación , Poli Adenosina Difosfato Ribosa/química , Unión Proteica , Relación Estructura-Actividad , Factores de Tiempo
2.
Nature ; 499(7456): 111-4, 2013 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-23698368

RESUMEN

Facilitates chromatin transcription (FACT) is a conserved histone chaperone that reorganizes nucleosomes and ensures chromatin integrity during DNA transcription, replication and repair. Key to the broad functions of FACT is its recognition of histones H2A-H2B (ref. 2). However, the structural basis for how histones H2A-H2B are recognized and how this integrates with the other functions of FACT, including the recognition of histones H3-H4 and other nuclear factors, is unknown. Here we reveal the crystal structure of the evolutionarily conserved FACT chaperone domain Spt16M from Chaetomium thermophilum, in complex with the H2A-H2B heterodimer. A novel 'U-turn' motif scaffolded onto a Rtt106-like module embraces the α1 helix of H2B. Biochemical and in vivo assays validate the structure and dissect the contribution of histone tails and H3-H4 towards Spt16M binding. Furthermore, we report the structure of the FACT heterodimerization domain that connects FACT to replicative polymerases. Our results show that Spt16M makes several interactions with histones, which we suggest allow the module to invade the nucleosome gradually and block the strongest interaction of H2B with DNA. FACT would thus enhance 'nucleosome breathing' by re-organizing the first 30 base pairs of nucleosomal histone-DNA contacts. Our snapshot of the engagement of the chaperone with H2A-H2B and the structures of all globular FACT domains enable the high-resolution analysis of the vital chaperoning functions of FACT, shedding light on how the complex promotes the activity of enzymes that require nucleosome reorganization.


Asunto(s)
Chaetomium/química , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Histonas/metabolismo , Chaperonas Moleculares/química , Chaperonas Moleculares/metabolismo , Secuencias de Aminoácidos , Secuencia Conservada , Cristalografía por Rayos X , ADN/química , ADN/metabolismo , Replicación del ADN , Histonas/química , Interacciones Hidrofóbicas e Hidrofílicas , Modelos Moleculares , Nucleosomas/química , Nucleosomas/metabolismo , Unión Proteica , Multimerización de Proteína , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Especificidad por Sustrato
3.
Cell Rep ; 42(10): 113300, 2023 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-37858472

RESUMEN

All vertebrate genomes encode for three large histone H2A variants that have an additional metabolite-binding globular macrodomain module, macroH2A. MacroH2A variants impact heterochromatin organization and transcription regulation and establish a barrier for cellular reprogramming. However, the mechanisms of how macroH2A is incorporated into chromatin and the identity of any chaperones required for histone deposition remain elusive. Here, we develop a split-GFP-based assay for chromatin incorporation and use it to conduct a genome-wide mutagenesis screen in haploid human cells to identify proteins that regulate macroH2A dynamics. We show that the histone chaperone ANP32B is a regulator of macroH2A deposition. ANP32B associates with macroH2A in cells and in vitro binds to histones with low nanomolar affinity. In vitro nucleosome assembly assays show that ANP32B stimulates deposition of macroH2A-H2B and not of H2A-H2B onto tetrasomes. In cells, depletion of ANP32B strongly affects global macroH2A chromatin incorporation, revealing ANP32B as a macroH2A histone chaperone.


Asunto(s)
Cromatina , Histonas , Humanos , Histonas/metabolismo , Chaperonas de Histonas/metabolismo , Regulación de la Expresión Génica , Chaperonas Moleculares/metabolismo , Nucleosomas , Proteínas Nucleares/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA