Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Electrochim Acta ; 296: 317-326, 2019 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-30631212

RESUMEN

Major challenges for effective implementation of the Electro-Fenton (EF) water treatment process are that conventional efficient cathodes are relatively expensive, and H2O2 activation by Fe2+ may cause secondary pollution. Herein, we propose a low-cost activated carbon/stainless steel mesh (ACSS) composite cathode, where the SS mesh distributes the current and the AC simultaneously supports H2O2 electrogeneration, H2O2 activation, and organic compounds (OCs) adsorption. The oxygen-containing groups on the AC function as oxygen reduction reaction (ORR) sites for H2O2 electrogeneration; while the porous configuration supply sufficient reactive surface area for ORR. 8.9 mg/L H2O2 was obtained with 1.5 g AC at 100 mA under neutral pH without external O2 supply. The ACSS electrode is also effective for H2O2 activation to generate ‧OH, especially under neutral pH. Adsorption shows limited influence on both H2O2 electrogeneration and activation. The iron-free EF process enabled by the ACSS cathode is effective for reactive blue 19 (RB19) degradation. 61.5% RB19 was removed after 90 min and 74.3% TOC was removed after 720 min. Moreover, long-term stability test proved its relatively stable performance. Thus, the ACSS electrode configuration is promising for practical and cost-effective EF process for transformation of OCs in water.

2.
Electrochem commun ; 96: 37-41, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-30546268

RESUMEN

The performance of the Electro-Fenton (EF) process for contaminant degradation depends on the rate of H2O2 production at the cathode via 2-electron dissolved O2 reduction. However, the low solubility of O2 (≈1×10-3 mol dm-3) limits H2O2 production. Herein, a novel and practical strategy that enables the synergistic utilization of O2 from the bulk electrolyte and ambient air for efficient H2O2 production is proposed. Compared with a conventional "submerged" cathode, the H2O2 concentration obtained using the "floating" cathode is 4.3 and 1.5 times higher using porous graphite felt (GF) and reticulated vitreous carbon (RVC) foam electrodes, respectively. This surprising enhancement results from the formation of a three-phase interface inside the porous cathode, where the O2 from ambient air is also utilized for H2O2 production. The contribution of O2 from ambient air varies depending on the cathode material and is calculated to be 76.7% for the GF cathode and 35.6% for the RVC foam cathode. The effects of pH, current, and mixing on H2O2 production are evaluated. Finally, the EF process enhanced by the "floating" cathode degraded 78.3% of the anti-inflammatory drug ibuprofen after 120 min compared to only 25.4% using a conventional "submerged" electrode, without any increase in the cost.

3.
Chem Eng J ; 338: 709-718, 2018 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-32153347

RESUMEN

Efficient H2O2 electrogeneration from 2-electron oxygen reduction reaction (ORR) represents an important challenge for environmental remediation application. H2O2 production is determined by 2-electron ORR as well as H2O2 decomposition. In this work, a novel strategy based on the systematical investigation on H2O2 decomposition pathways was reported, presenting a drastically improved bulk H2O2 concentration. Results showed that bulk phase disproportion, cathodic reduction, and anodic oxidation all contributed to H2O2 depletion. To decrease the extent of H2O2 cathodic reduction, the pulsed current was applied and proved to be highly effective to lower the extent of H2O2 electroreduction. A systematic study of various pulsed current parameters showed that H2O2 concentration was significantly enhanced by 61.6% under pulsed current of "2s ON + 2s OFF" than constant current. A mechanism was proposed that under pulsed current, less H2O2 molecules were electroreduced when they diffused from the porous cathode to the bulk electrolyte. Further results demonstrated that a proper pulse frequency was necessary to achieve a higher H2O2 production. Finally, this strategy was applied to Electro-Fenton (EF) process with ibuprofen as model pollutant. 75.0% and 34.1% ibuprofen were removed under pulsed and constant current at 10 min, respectively. The result was in consistent with the higher H2O2 and ·OH production in EF under pulsed current. This work poses a potential approach to drastically enhance H2O2 production for improved EF performance on organic pollutants degradation without making any changes to the system except for power mode.

4.
Anal Chim Acta ; 1251: 341004, 2023 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-36925309

RESUMEN

The relatively low measurement repeatability has long been considered as a major obstacle to the widespread use and commercialization of laser-induced breakdown spectroscopy (LIBS). Although many efforts have been made to improve the signal repeatability in the short term, how to improve the long-term signal repeatability is critical in practical applications and has rarely been studied. Moreover, the mechanisms behind the degradation of long-term repeatability are not fully revealed. This study proposes a new method to improve the long-term repeatability of LIBS measurement, which modifies the spectral intensity based on laser beam intensity distribution. It first pre-processes the beam intensity distribution profiles and spectral intensity. Then the relationship between the relative deviations of beam and spectral intensities is modelled using Partial Least Squares Regression (PLSR). The proposed method was tested on copper and silicon samples, and the spectra and laser beam intensity distribution were recorded for more than thirty days. Day-to-day variations in beam intensity distribution were observed. Such variations can lead to changes in spectral intensity, resulting in degraded signal repeatability. By modifying the spectral intensity, the long-term signal repeatability was improved. Specifically, in terms of day-mean spectral intensity, the valid correction rates were above 70% for both of copper silicon sample in most cases. Long-term RSD decreased from ∼13.5% to ∼4% for copper and decreased from ∼10.7% to 6.5% for silicon sample. These results indicate that the proposed method provides a viable method for improving the long-term repeatability of LIBS measurement.

5.
Environ Sci Pollut Res Int ; 25(6): 6015-6025, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29238928

RESUMEN

The performance of cathode on H2O2 electrogeneration is a critical factor that limits the practical application of electro-Fenton (EF) process. Herein, we report a simple but effective electrochemical modification of reticulated vitreous carbon foam (RVC foam) electrode for enhanced H2O2 electrogeneration. Cyclic voltammetry, chronoamperometry, and X-ray photoelectron spectrum were used to characterize the modified electrode. Oxygen-containing groups (72.5-184.0 µmol/g) were introduced to RVC foam surface, thus resulting in a 59.8-258.2% higher H2O2 yield. The modified electrodes showed much higher electrocatalytic activity toward O2 reduction and good stability. Moreover, aimed at weakening the extent of electroreduction of H2O2 in porous RVC foam, the strategy of pulsed current was proposed. H2O2 concentration was 582.3 and 114.0% higher than the unmodified and modified electrodes, respectively. To test the feasibility of modification, as well as pulsed current, EF process was operated for removal of Reactive Blue 19 (RB19). The fluorescence intensity of hydroxybenzoic acid in EF with modified electrode is 3.2 times higher than EF with unmodified electrode, illustrating more hydroxyl radicals were generated. The removal efficiency of RB 19 in EF with unmodified electrode, modified electrode, and unmodified electrode assisted by pulsed current was 53.9, 68.9, and 81.1%, respectively, demonstrating that the green modification approach, as well as pulsed current, is applicable in EF system for pollutant removal. Graphical abstract ᅟ.


Asunto(s)
Antraquinonas/química , Carbono/química , Electrodos , Restauración y Remediación Ambiental/métodos , Peróxido de Hidrógeno/química , Técnicas Electroquímicas , Estudios de Factibilidad , Radical Hidroxilo/química , Oxidación-Reducción
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA