Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nature ; 624(7992): 545-550, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38030729

RESUMEN

Hybridizing superconductivity with the quantum Hall (QH) effect has notable potential for designing circuits capable of inducing and manipulating non-Abelian states for topological quantum computation1-3. However, despite recent experimental progress towards this hybridization4-15, concrete evidence for a chiral QH Josephson junction16-the elemental building block for coherent superconducting QH circuits-is still lacking. Its expected signature is an unusual chiral supercurrent flowing in QH edge channels, which oscillates with a specific 2ϕ0 magnetic flux periodicity16-19 (ϕ0 = h/2e is the superconducting flux quantum, where h is the Planck constant and e is the electron charge). Here we show that ultra-narrow Josephson junctions defined in encapsulated graphene nanoribbons exhibit a chiral supercurrent, visible up to 8 T and carried by the spin-degenerate edge channel of the QH plateau of resistance h/2e2 ≈ 12.9 kΩ. We observe reproducible 2ϕ0-periodic oscillations of the supercurrent, which emerge at a constant filling factor when the area of the loop formed by the QH edge channel is constant, within a magnetic-length correction that we resolve in the data. Furthermore, by varying the junction geometry, we show that reducing the superconductor/normal interface length is crucial in obtaining a measurable supercurrent on QH plateaus, in agreement with theories predicting dephasing along the superconducting interface19-22. Our findings are important for the exploration of correlated and fractional QH-based superconducting devices that host non-Abelian Majorana and parafermion zero modes23-32.

2.
Nano Lett ; 22(22): 8845-8851, 2022 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-36332116

RESUMEN

Implementing superconductors capable of proximity-inducing a large energy gap in semiconductors in the presence of strong magnetic fields is a major goal toward applications of semiconductor/superconductor hybrid materials in future quantum information technologies. Here, we study the performance of devices consisting of InAs nanowires in electrical contact with molybdenum-rhenium (MoRe) superconducting alloys. The MoRe thin films exhibit transition temperatures of ∼10 K and critical fields exceeding 6 T. Normal/superconductor devices enabled tunnel spectroscopy of the corresponding induced superconductivity, which was maintained up to ∼10 K, and MoRe-based Josephson devices exhibited supercurrents and multiple Andreev reflections. We determine an induced superconducting gap lower than expected from the transition temperature and observe gap softening at finite magnetic field. These may be common features for hybrids based on large-gap, type II superconductors. The results encourage further development of MoRe-based hybrids.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA