Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Int J Mol Sci ; 24(12)2023 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-37373067

RESUMEN

Prohibitin (PHB) is a tumour suppressor gene with several different molecular activities. PHB overexpression leads to G1/S-phase cell cycle arrest, and PHB represses the androgen receptor (AR) in prostate cancer cells. PHB interacts with and represses members of the E2F family in a manner that may also be AR-linked, therefore making the AR:PHB:E2F interaction axis highly complex. PHB siRNA increased the growth and metastatic potential of LNCaP mouse xenografts in vivo. Conversely, PHB ectopic cDNA overexpression affected several hundred genes in LNCaP cells. Furthermore, gene ontology analysis showed that in addition to cell cycle regulation, several members of the WNT family were significantly downregulated (WNT7B, WNT9A and WNT10B), as well as pathways for cell adhesion. Online GEO data studies showed PHB expression to be decreased in clinical cases of metastatic prostate cancer, and to be correlated with higher WNT expression in metastasis. PHB overexpression reduced prostate cancer cell migration and motility in wound-healing assays, reduced cell invasion through a Matrigel layer and reduced cellular attachment. In LNCaP cells, WNT7B, WNT9A and WNT10B expression were also upregulated by androgen treatment and downregulated by androgen antagonism, indicating a role for AR in the control of these WNT genes. However, these WNTs were strongly cell cycle regulated. E2F1 cDNA ectopic expression and PHB siRNA (both cell cycle promoting effects) increased WNT7B, WNT9A and WNT10B expression, and these genes were also upregulated as cells were released from G1 to S phase synchronisation, indicating further cell cycle regulation. Therefore, the repressive effects of PHB may inhibit AR, E2F and WNT expression and its loss may increase metastatic potential in human prostate cancer.


Asunto(s)
Andrógenos , Prohibitinas , Neoplasias de la Próstata , Animales , Humanos , Masculino , Ratones , Andrógenos/farmacología , Ciclo Celular/genética , Línea Celular Tumoral , Proliferación Celular/genética , ADN Complementario , Puntos de Control de la Fase G1 del Ciclo Celular , Regulación Neoplásica de la Expresión Génica , Prohibitinas/genética , Neoplasias de la Próstata/metabolismo , Receptores Androgénicos/metabolismo , ARN Interferente Pequeño/farmacología
2.
Int J Mol Sci ; 21(11)2020 05 30.
Artículo en Inglés | MEDLINE | ID: mdl-32486243

RESUMEN

The Wnt signaling pathway is evolutionarily conserved, regulating both embryonic development and maintaining adult tissue homeostasis. Wnt signaling controls several fundamental cell functions, including proliferation, differentiation, migration, and stemness. It therefore plays an important role in the epithelial homeostasis and regeneration of the gastrointestinal tract. Often, both hypo- or hyper-activation of the pathway due to genetic, epigenetic, or receptor/ligand alterations are seen in many solid cancers, such as breast, colorectal, gastric, and prostate. Gastric cancer (GC) is the fourth commonest cause of cancer worldwide and is the second leading cause of cancer-related death annually. Although the number of new diagnoses has declined over recent decades, prognosis remains poor, with only 15% surviving to five years. Geographical differences in clinicopathological features are also apparent, with epidemiological and genetic studies revealing GC to be a highly heterogeneous disease with phenotypic diversity as a result of etiological factors. The molecular heterogeneity associated with GC dictates that a single 'one size fits all' approach to management is unlikely to be successful. Wnt pathway dysregulation has been observed in approximately 50% of GC tumors and may offer a novel therapeutic target for patients who would otherwise have a poor outcome. This mini review will highlight some recent discoveries involving Wnt signaling in GC.


Asunto(s)
Neoplasias Gástricas/tratamiento farmacológico , Neoplasias Gástricas/metabolismo , Vía de Señalización Wnt , Animales , Diferenciación Celular , Movimiento Celular , Proliferación Celular , Transición Epitelial-Mesenquimal , Receptores Frizzled/metabolismo , Regulación Neoplásica de la Expresión Génica , Humanos , Ligandos , Ratones , Mutación , Metástasis de la Neoplasia , beta Catenina/metabolismo
3.
Tumour Biol ; 37(10): 13049-13057, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27514543

RESUMEN

Prostate cancer (PCa) is the second most common cancer among the male population. Conventional therapies target androgen signalling, which drives tumour growth; however, they provide limited survival benefits for patients. It is essential, therefore, to develop a more specific biomarker than the current gold standard, PSA testing. The Wnt signalling pathway induces expression of target genes through cell surface receptors. A non-canonical member of this family, Wnt-11, is evolutionarily highly conserved and is normally expressed by various cells in the developing embryo, as well as in the heart, liver and skeletal muscle of adult humans. We comprehensively review several cell signalling pathways to explain how they interact with Wnt-11, demonstrating its use as a potential biomarker for PCa. Several studies have shown that the expression of Wnt-11 is associated with gastric, renal and colorectal adenocarcinomas and PCa. Moreover, Wnt-11 affects extracellular matrix composition and cytoskeletal rearrangement, and it is required for proliferation and/or survival during cell differentiation. It was found that PCa cell lines express high levels of Wnt-11, which allows differentiation of the epithelial prostate tumour cells to neuron-like (NE) cells. The NE cells produce additional factors that can cause regression after treatment. Accumulating evidence shows that Wnt-11 could be a potential biomarker in diagnosing PCa. Many studies have shown both non-canonical and canonical Wnts interact with several signalling cascades such as PKC, JNK, NF-κB, Rho, PKA and PI3K. In particular, evidence demonstrates Wnt-11 is involved in the progression of PCa, thus it could have the potential to become both a specific disease marker and an important therapeutic target.


Asunto(s)
Neoplasias de la Próstata/patología , Proteínas Wnt/metabolismo , Adulto , Humanos , Masculino , Neoplasias de la Próstata/metabolismo , Vía de Señalización Wnt
4.
Biomolecules ; 12(2)2022 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-35204808

RESUMEN

Aberrant activation of the Wnt pathway is emerging as a frequent event during prostate cancer that can facilitate tumor formation, progression, and therapeutic resistance. Recent discoveries indicate that targeting the Wnt pathway to treat prostate cancer may be efficacious. However, the functional consequence of activating the Wnt pathway during the different stages of prostate cancer progression remains unclear. Preclinical work investigating the efficacy of targeting Wnt signaling for the treatment of prostate cancer, both in primary and metastatic lesions, and improving our molecular understanding of treatment responses is crucial to identifying effective treatment strategies and biomarkers that help guide treatment decisions and improve patient care. In this review, we outline the type of genetic alterations that lead to activated Wnt signaling in prostate cancer, highlight the range of laboratory models used to study the role of Wnt genetic drivers in prostate cancer, and discuss new mechanistic insights into how the Wnt cascade facilitates prostate cancer growth, metastasis, and drug resistance.


Asunto(s)
Neoplasias de la Próstata , Vía de Señalización Wnt , Humanos , Masculino , Neoplasias de la Próstata/tratamiento farmacológico , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/metabolismo , Vía de Señalización Wnt/genética , beta Catenina/metabolismo
5.
Mol Ther Oncolytics ; 25: 43-56, 2022 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-35399606

RESUMEN

Oncolytic virotherapies (OV) hold immense clinical potential. OV based on human adenoviruses (HAdV) derived from HAdV with naturally low rates of pre-existing immunity will be beneficial for future clinical translation. We generated a low-seroprevalence HAdV-D10 serotype vector incorporating an αvß6 integrin-selective peptide, A20, to target αvß6-positive tumor cell types. HAdV-D10 has limited natural tropism. Structural and biological studies of HAdV-D10 knob protein highlighted low-affinity engagement with native adenoviral receptors CAR and sialic acid. HAdV-D10 fails to engage blood coagulation factor X, potentially eliminating "off-target" hepatic sequestration in vivo. We engineered an A20 peptide that selectively binds αvß6 integrin into the DG loop of HAdV-D10 fiber knob. Assays in αvß6+ cancer cell lines demonstrated significantly increased transduction mediated by αvß6-targeted variants compared with controls, confirmed microscopically. HAdV-D10.A20 resisted neutralization by neutralizing HAdV-C5 sera. Systemic delivery of HAdV-D10.A20 resulted in significantly increased GFP expression in BT20 tumors. Replication-competent HAdV-D10.A20 demonstrated αvß6 integrin-selective cell killing in vitro and in vivo. HAdV-D10 possesses characteristics of a promising virotherapy, combining low seroprevalence, weak receptor interactions, and reduced off-target uptake. Incorporation of an αvß6 integrin-selective peptide resulted in HAdV-D10.A20, with significant potential for clinical translation.

6.
Anticancer Res ; 39(10): 5311-5327, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31570425

RESUMEN

BACKGROUND/AIM: MiR-221, often described both as an oncogenic microRNA and as a tumour suppressor, targets mRNAs involved in carcinogenesis. While other oncogenic microRNAs showed correlations with prostate cancer cell lines' aggressiveness, miR-221 showed an unusual overexpression in PC3. MATERIALS AND METHODS: CRISPR was used to delete miR-221 from PC3 cells. Analysing the characteristics of PC3miR-221del cells, a reduced growth rate and expression of cell-cycle genes was observed. In global gene expression/ontology analysis of PC3miR-221del cells, cell-cell and cell-substrate adhesion pathways were found to be greatly affected. In addition, reduced levels of adhesion, invasion and motility for PC3miR-221del cells, a change in F-actin localisation and a reduction of EMT markers were observed. RESULTS: The tumour suppressor gene, DIRAS3, was a predicted target of miR-221. In PC3miR-221del cells DIRAS3 was up-regulated at the gene and protein level. Ectopic expression of DIRAS3 in PC3wt cells recapitulated the cellular morphology changes seen in PC3miR-221del cells. DIRAS3 3'UTR was more stable in PC3miR-221del cells, as measured by semi-quantitative PCR and luciferase fusion reporter assays. CONCLUSION: MiR-221 promotes aggressiveness of PC3 cells by down-regulating DIRAS3, and promoting epithelial-to-mesenchymal transition.


Asunto(s)
Adhesión Celular/genética , Movimiento Celular/genética , Proliferación Celular/genética , MicroARNs/genética , Eliminación de Secuencia/genética , Regiones no Traducidas 3'/genética , Ciclo Celular/genética , Línea Celular Tumoral , Regulación hacia Abajo/genética , Regulación Neoplásica de la Expresión Génica/genética , Humanos , Masculino , Oncogenes/genética , Células PC-3 , Neoplasias de la Próstata/genética , Regulación hacia Arriba/genética , Proteínas de Unión al GTP rho/genética
7.
Cancer Res ; 79(5): 970-981, 2019 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-30622113

RESUMEN

A subset of patients with gastric cancer have mutations in genes that participate in or regulate Wnt signaling at the level of ligand (Wnt) receptor (Fzd) binding. Moreover, increased Fzd expression is associated with poor clinical outcome. Despite these findings, there are no in vivo studies investigating the potential of targeting Wnt receptors for treating gastric cancer, and the specific Wnt receptor transmitting oncogenic Wnt signaling in gastric cancer is unknown. Here, we use inhibitors of Wnt/Fzd (OMP-18R5/vantictumab) and conditional gene deletion to test the therapeutic potential of targeting Wnt signaling in preclinical models of intestinal-type gastric cancer and ex vivo organoid cultures. Pharmacologic targeting of Fzd inhibited the growth of gastric adenomas in vivo. We identified Fzd7 to be the predominant Wnt receptor responsible for transmitting Wnt signaling in human gastric cancer cells and mouse models of gastric cancer, whereby Fzd7-deficient cells were retained in gastric adenomas but were unable to respond to Wnt signals and consequently failed to proliferate. Genetic deletion of Fzd7 or treatment with vantictumab was sufficient to inhibit the growth of gastric adenomas with or without mutations to Apc. Vantictumab is currently in phase Ib clinical trials for advanced pancreatic, lung, and breast cancer. Our data extend the scope of patients that may benefit from this therapeutic approach as we demonstrate that this drug will be effective in treating patients with gastric cancer regardless of APC mutation status. SIGNIFICANCE: The Wnt receptor Fzd7 plays an essential role in gastric tumorigenesis irrespective of Apc mutation status, therefore targeting Wnt/Fzd7 may be of therapeutic benefit to patients with gastric cancer.


Asunto(s)
Proteína de la Poliposis Adenomatosa del Colon/genética , Receptores Frizzled/metabolismo , Neoplasias Gástricas/metabolismo , Vía de Señalización Wnt , Proteína de la Poliposis Adenomatosa del Colon/metabolismo , Animales , Carcinogénesis , Procesos de Crecimiento Celular/fisiología , Línea Celular Tumoral , Receptores Frizzled/antagonistas & inhibidores , Receptores Frizzled/genética , Eliminación de Gen , Técnicas de Silenciamiento del Gen , Xenoinjertos , Humanos , Ratones , Mutación , Neoplasias Gástricas/genética , Neoplasias Gástricas/patología
8.
Cancer Discov ; 8(6): 764-779, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29581176

RESUMEN

Genetic alterations that potentiate PI3K signaling are frequent in prostate cancer, yet how different genetic drivers of the PI3K cascade contribute to prostate cancer is unclear. Here, we report PIK3CA mutation/amplification correlates with poor survival of patients with prostate cancer. To interrogate the requirement of different PI3K genetic drivers in prostate cancer, we employed a genetic approach to mutate Pik3ca in mouse prostate epithelium. We show Pik3caH1047R mutation causes p110α-dependent invasive prostate carcinoma in vivo Furthermore, we report that PIK3CA mutation and PTEN loss coexist in patients with prostate cancer and can cooperate in vivo to accelerate disease progression via AKT-mTORC1/2 hyperactivation. Contrasting single mutants that slowly acquire castration-resistant prostate cancer (CRPC), concomitant Pik3ca mutation and Pten loss caused de novo CRPC. Thus, Pik3ca mutation and Pten deletion are not functionally redundant. Our findings indicate that PIK3CA mutation is an attractive prognostic indicator for prostate cancer that may cooperate with PTEN loss to facilitate CRPC in patients.Significance: We show PIK3CA mutation correlates with poor prostate cancer prognosis and causes prostate cancer in mice. Moreover, PIK3CA mutation and PTEN loss coexist in prostate cancer and can cooperate in vivo to accelerate tumorigenesis and facilitate CRPC. Delineating this synergistic relationship may present new therapeutic/prognostic approaches to overcome castration/PI3K-AKT-mTORC1/2 inhibitor resistance. Cancer Discov; 8(6); 764-79. ©2018 AACR.See related commentary by Triscott and Rubin, p. 682This article is highlighted in the In This Issue feature, p. 663.


Asunto(s)
Fosfatidilinositol 3-Quinasa Clase I/genética , Mutación , Fosfohidrolasa PTEN/genética , Neoplasias de la Próstata Resistentes a la Castración/genética , Animales , Línea Celular Tumoral , Progresión de la Enfermedad , Amplificación de Genes , Eliminación de Gen , Humanos , Masculino , Ratones , Invasividad Neoplásica , Neoplasias Experimentales , Pronóstico , Análisis de Supervivencia
9.
Cancer Lett ; 369(2): 316-22, 2015 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-26450374

RESUMEN

Recently, research has shed new light on the role of Prohibitin (PHB) in cancer pathogenesis across an array of cancer types. Important mechanisms for PHB have been unveiled in several cancers, especially with regard to the androgen independent state of prostate cancer (PC) and oestrogen dependent breast cancer. However, PHB is often overlooked due to its complex but subtle roles within the cell. Having gathered both historical and current research exploring PHB's role in different cancer types including prostate and breast, here we aim to pair this information with its molecular properties in the hope of translating this information into a clinical perspective, thus discussing its possible use in future cancer therapy.


Asunto(s)
Antineoplásicos/metabolismo , Neoplasias de la Mama/genética , Ciclo Celular/genética , Neoplasias de la Próstata/genética , Proteínas Represoras/genética , Femenino , Humanos , Masculino , Prohibitinas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA