RESUMEN
OX40 (CD134) is a tumor necrosis factor (TNF) receptor expressed primarily on activated CD4(+) and CD8(+) T cells and transmits a potent costimulatory signal when engaged. OX40 is transiently expressed after T-cell receptor engagement and is upregulated on the most recently antigen-activated T cells within inflammatory lesions (e.g. sites of autoimmune destruction and on tumor-infiltrating lymphocytes). Hence, it is an attractive target to modulate immune responses: OX40 blocking agents to inhibit undesirable inflammation or OX40 agonists to enhance immune responses. In regards to this review, OX40 agonists enhance anti-tumor immunity, which leads to therapeutic effects in mouse tumor models. A team of laboratory and clinical scientists at the Providence Cancer Center has collaborated to bring the preclinical observations in cancer models from the bench to the bedside. This review describes the journey from in vitro experiments through preclinical mouse models to the successful translation of the first OX40 agonist to the clinic for the treatment of patients with cancer.
Asunto(s)
Anticuerpos Monoclonales/uso terapéutico , Inmunidad Innata , Factores Inmunológicos/uso terapéutico , Neoplasias/tratamiento farmacológico , Receptores OX40/inmunología , Transducción de Señal/efectos de los fármacos , Transducción de Señal/inmunología , Animales , Anticuerpos Monoclonales/administración & dosificación , Linfocitos T CD4-Positivos/efectos de los fármacos , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD8-positivos/efectos de los fármacos , Linfocitos T CD8-positivos/inmunología , Proliferación Celular/efectos de los fármacos , Ensayos Clínicos como Asunto , Expresión Génica/inmunología , Haplorrinos , Humanos , Tolerancia Inmunológica/efectos de los fármacos , Inmunidad Innata/efectos de los fármacos , Factores Inmunológicos/administración & dosificación , Inflamación/tratamiento farmacológico , Inflamación/inmunología , Activación de Linfocitos/efectos de los fármacos , Linfocitos Infiltrantes de Tumor/efectos de los fármacos , Linfocitos Infiltrantes de Tumor/inmunología , Ratones , Ratones Noqueados , Neoplasias/inmunología , Neoplasias/patología , Ratas , Receptores OX40/agonistas , Receptores OX40/antagonistas & inhibidores , Receptores OX40/genética , Investigación Biomédica TraslacionalRESUMEN
BACKGROUND: Immune-related adverse events (irAEs) are major barriers of clinical management and further development of immune checkpoint inhibitors (ICIs) for cancer therapy. Therefore, biomarkers associated with the onset of severe irAEs are needed. In this study, we aimed to identify immune features detectable in peripheral blood and associated with the development of severe irAEs that required clinical intervention. METHODS: We used a 43-marker mass cytometry panel to characterize peripheral blood mononuclear cells from 28 unique patients with melanoma across 29 lines of ICI therapy before treatment (baseline), before the onset of irAEs (pre-irAE) and at the peak of irAEs (irAE-max). In the 29 lines of ICI therapy, 18 resulted in severe irAEs and 11 did not. RESULTS: Unsupervised and gated population analysis showed that patients with severe irAEs had a higher frequency of CD4+ naïve T cells and lower frequency of CD16+ natural killer (NK) cells at all time points. Gated population analysis additionally showed that patients with severe irAEs had fewer T cell immunoreceptor with Ig and ITIM domain (TIGIT+) regulatory T cells at baseline and more activated CD38+ CD4+ central memory T cells (TCM) and CD39+ and Human Leukocyte Antigen-DR Isotype (HLA-DR)+ CD8+ TCM at peak of irAEs. The differentiating immune features at baseline were predominantly seen in patients with gastrointestinal and cutaneous irAEs and type 1 diabetes. Higher frequencies of CD4+ naïve T cells and lower frequencies of CD16+ NK cells were also associated with clinical benefit to ICI therapy. CONCLUSIONS: This study demonstrates that high-dimensional immune profiling can reveal novel blood-based immune signatures associated with risk and mechanism of severe irAEs. Development of severe irAEs in melanoma could be the result of reduced immune inhibitory capacity pre-ICI treatment, resulting in more activated TCM cells after treatment.
Asunto(s)
Melanoma , Linfocitos T Reguladores , Humanos , Inhibidores de Puntos de Control Inmunológico/efectos adversos , Leucocitos Mononucleares , Melanoma/tratamiento farmacológico , Células Asesinas NaturalesRESUMEN
Background: Type 1 diabetes mellitus (T1DM) is a rare, but serious immune-related adverse event (irAE) of immune checkpoint inhibitors (ICIs). Our goal was to characterize treatment outcomes associated with ICI-induced T1DM through analysis of clinical, immunological and proteomic data. Methods: This was a single-center case series of patients with solid tumors who received ICIs and subsequently had a new diagnosis of T1DM. ICD codes and C-peptide levels were used to identify patients for chart review to confirm ICI-induced T1DM. Baseline blood specimens were studied for proteomic and immunophenotypic changes. Results: Between 2011 and 2023, 18 of 3744 patients treated at Huntsman Cancer Institute with ICIs were confirmed to have ICI-induced T1DM (0.48%). Eleven of the 18 patients received anti-PD1 monotherapy, 4 received anti-PD1 plus chemotherapy or targeted therapy, and 3 received ipilimumab plus nivolumab. The mean time to onset was 218 days (range 22-418 days). Patients had sudden elevated serum glucose within 2-3 weeks prior to diagnosis. Sixteen (89%) presented with diabetic ketoacidosis. Three of 12 patients had positive T1DM-associated autoantibodies. All patients with T1DM became insulin-dependent through follow-up. At median follow-up of 21.9 months (range 8.4-82.4), no patients in the melanoma group had progressed or died from disease. In the melanoma group, best responses were 2 complete response and 2 partial response while on active treatment; none in the adjuvant group had disease recurrence. Proteomic analysis of baseline blood suggested low inflammatory (IL-6, OSMR) markers and high metabolic (GLO1, DXCR) markers in ICI-induced T1DM cohort. Conclusions: Our case series demonstrates rapid onset and irreversibility of ICI-induced T1DM. Melanoma patients with ICI-induced T1DM display excellent clinical response and survival. Limited proteomic data also suggested a unique proteomic profile. Our study helps clinicians to understand the unique clinical presentation and long-term outcomes of this rare irAE for best clinical management.
Asunto(s)
Diabetes Mellitus Tipo 1 , Melanoma , Humanos , Inhibidores de Puntos de Control Inmunológico , Glucemia , Proteómica , Recurrencia Local de NeoplasiaRESUMEN
Background: Despite advancements in checkpoint inhibitor-based immunotherapy, patients with advanced melanoma who have progressed on standard dose ipilimumab (Ipi) + nivolumab continue to have poor prognosis. Several studies support a dose-response activity of Ipi, and one promising combination is Ipi 10mg/kg (Ipi10) + temozolomide (TMZ). Methods: We performed a retrospective cohort analysis of patients with advanced melanoma treated with Ipi10+TMZ in the immunotherapy refractory/resistant setting (n = 6), using similar patients treated with Ipi3+TMZ (n = 6) as comparison. Molecular profiling by whole exome sequencing (WES) and RNA-seq of tumors harvested through one responder's treatment was performed. Results: With a median follow up of 119 days, patients treated with Ipi10+TMZ had statistically significant longer median progression free survival of 144.5 days (range 27-219) vs 44 (26-75) in Ipi3+TMZ, p=0.04, and a trend for longer median overall survival of 154.5 days (27-537) vs 89.5 (26-548). All patients in the Ipi10 cohort had progressed on prior Ipi+Nivo. WES revealed only 12 shared somatic mutations including BRAF V600E. RNA-seq showed enrichment of inflammatory signatures, including interferon responses in metastatic lesions after standard dose Ipi + nivo and Ipi10 + TMZ compared to the primary tumor, and downregulated negative immune regulators including Wnt and TGFb signaling. Conclusion: Ipi10+TMZ demonstrated efficacy including dramatic responses in patients with advanced melanoma refractory to prior Ipi + anti-PD1, even with CNS metastases. Molecular data suggest a potential threshold of Ipi dose for activation of sufficient anti-tumor immune response, and higher dose Ipi is required for some patients.
RESUMEN
We conducted a randomized phase III trial to evaluate whether adjuvant pembrolizumab for one year (647 patients) improved recurrence-free survival (RFS) or overall survival (OS) in comparison with high-dose IFNα-2b for one year or ipilimumab for up to three years (654 patients), the approved standard-of-care adjuvant immunotherapies at the time of enrollment for patients with high-risk resected melanoma. At a median follow-up of 47.5 months, pembrolizumab was associated with significantly longer RFS than prior standard-of-care adjuvant immunotherapies [HR, 0.77; 99.62% confidence interval (CI), 0.59-0.99; P = 0.002]. There was no statistically significant association with OS among all patients (HR, 0.82; 96.3% CI, 0.61-1.09; P = 0.15). Proportions of treatment-related adverse events of grades 3 to 5 were 19.5% with pembrolizumab, 71.2% with IFNα-2b, and 49.2% with ipilimumab. Therefore, adjuvant pembrolizumab significantly improved RFS but not OS compared with the prior standard-of-care immunotherapies for patients with high-risk resected melanoma. SIGNIFICANCE: Adjuvant PD-1 blockade therapy decreases the rates of recurrence, but not survival, in patients with surgically resectable melanoma, substituting the prior standard-of-care immunotherapies for this cancer. See related commentary by Smithy and Shoushtari, p. 599. This article is highlighted in the In This Issue feature, p. 587.
Asunto(s)
Anticuerpos Monoclonales Humanizados , Ipilimumab , Melanoma , Adyuvantes Inmunológicos/efectos adversos , Anticuerpos Monoclonales Humanizados/efectos adversos , Antineoplásicos Inmunológicos/efectos adversos , Humanos , Ipilimumab/efectos adversos , Melanoma/tratamiento farmacológico , Melanoma/cirugía , Medición de RiesgoRESUMEN
Adherent bone marrow adult stem cells have been used in the treatment of GVHD. In this study, we investigate the capacity of a newly characterized population of stem cells, the Multipotent Adult Progenitor Cells (MAPC), to modulate acute GVHD. These cells were derived from bone marrow cells and grown extensively without evidence for replicative senescence or loss of differentiating capacity. MAPC significantly decreased mortality of acute GVHD. Moreover, they were non immunogenic and they were not sensitive to NK-lysis. When these cells were added to a mixed lymphocyte reaction (MLR), a dose-dependent suppression of T cell proliferation was observed that was non-MHC restricted, was reversible upon removal of MAPC from culture and was mediated by soluble factors. These data show that in vitro expanded adult stem cells can efficiently control an allo-reactive response associated with acute GVHD, that they are immuno-privileged and present strong immunosuppressive properties.
Asunto(s)
Células Madre Adultas/fisiología , Enfermedad Injerto contra Huésped , Células Madre Pluripotentes/fisiología , Adulto , Células Madre Adultas/citología , Animales , Línea Celular , Proliferación Celular , Enfermedad Injerto contra Huésped/inmunología , Enfermedad Injerto contra Huésped/prevención & control , Humanos , Estimación de Kaplan-Meier , Activación de Linfocitos , Prueba de Cultivo Mixto de Linfocitos , Células Madre Multipotentes/citología , Células Madre Multipotentes/fisiología , Células Madre Pluripotentes/citología , Ratas , Ratas Endogámicas BUF , Ratas Endogámicas Lew , Linfocitos T/citología , Linfocitos T/inmunología , Trasplante HomólogoRESUMEN
The membrane-bound form of Fas ligand (FasL) signals apoptosis in target cells through engagement of the death receptor Fas, whereas the proteolytically processed, soluble form of FasL does not induce cell death. However, soluble FasL can be rendered active upon cross-linking. Since the minimal extent of oligomerization of FasL that exerts cytotoxicity is unknown, we engineered hexameric proteins containing two trimers of FasL within the same molecule. This was achieved by fusing FasL to the Fc portion of immunoglobulin G1 or to the collagen domain of ACRP30/adiponectin. Trimeric FasL and hexameric FasL both bound to Fas, but only the hexameric forms were highly cytotoxic and competent to signal apoptosis via formation of a death-inducing signaling complex. Three sequential early events in Fas-mediated apoptosis could be dissected, namely, receptor binding, receptor activation, and recruitment of intracellular signaling molecules, each of which occurred independently of the subsequent one. These results demonstrate that the limited oligomerization of FasL, and most likely of some other tumor necrosis factor family ligands such as CD40L, is required for triggering of the signaling pathways.
Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Apoptosis/fisiología , Péptidos y Proteínas de Señalización Intercelular , Glicoproteínas de Membrana/metabolismo , Adiponectina , Secuencia de Aminoácidos , Animales , Linfocitos B/metabolismo , Ligando de CD40/genética , Ligando de CD40/metabolismo , Proteínas Portadoras/metabolismo , Caspasa 8 , Caspasa 9 , Caspasas/metabolismo , Muerte Celular/fisiología , Células Cultivadas , Colágeno/metabolismo , Proteínas Adaptadoras de Señalización del Receptor del Dominio de Muerte , Dimerización , Proteína Ligando Fas , Proteína de Dominio de Muerte Asociada a Fas , Humanos , Inmunoglobulina G/genética , Inmunoglobulina G/metabolismo , Glicoproteínas de Membrana/genética , Ratones , Ratones Endogámicos C57BL , Datos de Secuencia Molecular , Proteínas/genética , Proteínas/metabolismo , Receptores del Factor de Necrosis Tumoral/metabolismo , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Transducción de Señal , Receptor fas/metabolismoRESUMEN
BACKGROUND: Pegylated-interferon alpha (PegINFα) treatment of patients with polycythemia vera (PV) and essential thrombocythemia (ET) has resulted in long-term clinical response, decreased JAK2V617F allelic burden and restoration of polyclonal hematopoiesis. The mechanisms of the beneficial effects of PegINFα are not clear, but available evidence suggests direct suppression of JAK2-mutated clone, induction of dormant stem cells to proliferation, and augmentation of an immune effect against PV and ET clones. METHODS: We analyzed the phenotype and frequency of peripheral blood lymphocytes (PBL) from PegINFα treated patients and compared them to patients treated with hydroxyurea (HU). Samples collected at various time points before and during treatment were analyzed using multicolor flow cytometry. RESULTS: We found that PegINFα increased the frequency of peripheral blood CD4+ Foxp3+ regulatory T cells (Treg). Highly suppressive Treg, characterized by co-expression of CD39 and HLA-DR, were also increased in PBL from PegINFα treated patients. We observed an augmentation of cycling CD8+ T cells, NK cells, and of poorly activated CD38+CD8+ T cells. Our results also suggest that PegINFα increased the frequency of PD-1+ CD4+ helper cells and PD-1+ CD4+ Foxp3+ Treg cells. None of these changes were present in HU treated patients. We analyzed the correlation between changes in different T cell populations in the peripheral blood with the changes in JAK2V617F allelic burden in clonal granulocytes. Augmentation of Ki-67+ Treg, HLA-DR+ CD39+ Treg, Helios+ Treg and HLA-DR+ CD38+ CD8+ T cells correlated with an increase in JAK2V617F allelic burden. We also found a positive correlation between PD-1+ Treg and JAK2V617F allelic burden; however, the number of available patients was small (n = 7). CONCLUSIONS: We report marked changes in frequencies of PBL subsets after PegINFα treatment, suggesting an immunomodulatory effect by PegINFα. Generation of a more suppressive immune response, as measured by an increase in highly suppressive Treg and poorly activated CD8+ T cells, correlated with a poor molecular response. In this study, we have not identified changes in the PBL that would indicate the presence of an effective anti-tumor response.Trial registration NCT01259856, December 7. 2010 and NCT01259817, December 6. 2010, Grant #1P01CA108671-O1A2, July 17. 2006, Sponsor: MPDRC/NIH, NCI-2012-00269, January 12. 2011 and NCI-2012-00268, January 12. 2011.
RESUMEN
Multiple Myeloma (MM) is a plasma cell (PC) malignancy, which despite significant therapeutic advances, is still considered incurable. This is due to the persistence of chemotherapy-resistant minimal residual disease in the patients' bone marrow (BM) after an effective induction therapy. Immunotherapies targeting surface molecules expressed on the bulk of tumor cells and the chemotherapy-resistant, myeloma-propagating cells could play a central role in this clinical setting. We recently described surface molecule CD229 as a potential therapeutic target for MM. In our current study we assessed the expression of CD229 on different PC subtypes and on cells with a myeloma-propagating phenotype in a total of 77 patients with PC dyscrasias independently at 2 different cancer centers. We found that CD229 was strongly and homogeneously overexpressed on the PC of patients with monoclonal gammopathy of undetermined significance (MGUS), smoldering myeloma, MM, and PC leukemia. CD229 was particularly overexpressed on those PC showing an abnormal phenotype such as expression of CD56. Most importantly, CD229 was also highly expressed on those cells in the patients' BM displaying the phenotype of chemotherapy-resistant and myeloma-propagating cells. In conclusion, our combined findings suggest that immunotherapies targeting CD229 will not only be effective for the bulk of tumor cells but will also help to eradicate chemotherapy-resistant cells remaining in the patients' BM after induction treatment. Hopefully, the design of CD229-specific monoclonal antibodies or chimeric antigen receptor-transduced T cells will help to achieve prolonged remissions or even cures in MM patients.
Asunto(s)
Antígenos CD/inmunología , Mieloma Múltiple/inmunología , Células Plasmáticas/inmunología , Adulto , Antígenos CD/genética , Antígeno CD56/genética , Antígeno CD56/inmunología , Resistencia a Antineoplásicos , Femenino , Humanos , Inmunofenotipificación , Gammopatía Monoclonal de Relevancia Indeterminada/inmunología , Paraproteinemias/inmunología , Fenotipo , Células Plasmáticas/citología , Familia de Moléculas Señalizadoras de la Activación LinfocitariaRESUMEN
BACKGROUND: We examined the phenotype and function of lymphocytes collected from the peripheral blood (PBL) and tumor (TIL) of patients with two different solid malignancies: colorectal cancer liver metastases (CRLM) and ovarian cancer (OVC). METHODS: Tumor and corresponding peripheral blood were collected from 16 CRLM and 22 OVC patients; immediately following resection they were processed and analyzed using a multi-color flow cytometry panel. Cytokine mRNA from purified PBL and TIL CD4(+) T cells were also analyzed by qPCR. RESULTS: Overall, we found similar changes in the phenotypic and cytokine profiles when the TIL were compared to PBL from patients with two different malignancies. The percentage of Treg (CD4(+)/CD25(+)/FoxP3(+)) in PBL and TIL was similar: 8.1% versus 10.2%, respectively in CRLM patients. However, the frequency of Treg in primary OVC TIL was higher than PBL: 19.2% versus 4.5% (p <0.0001). A subpopulation of Treg expressing HLA-DR was markedly increased in TIL compared to PBL in both tumor types, CRLM: 69.0% versus 31.7% (p = 0.0002) and OVC 74.6% versus 37.0% (p <0.0001), which suggested preferential Treg activation within the tumor. The cytokine mRNA profile showed that IL-6, a cytokine known for its immunosuppressive properties through STAT3 upregulation, was increased in TIL samples in patients with OVC and CRLM. Both TIL populations also contained a significantly higher proportion of activated CD8(+) T cells (HLA-DR(+)/CD38(+)) compared to PBL (CRLM: 30.2% vs 7.7%, (p = 0.0012), OVC: 57.1% vs 12.0%, (p <0.0001)). CONCLUSION: This study demonstrates that multi-color flow cytometry of freshly digested tumor samples reveals phenotypic differences in TIL vs PBL T cell sub-populations. The TIL composition in primary and metastatic tumors from two distinct histologies were remarkably similar, showing a greater proportion of activated/suppressive Treg (HLA-DR(+), CD39(+), CTLA-4(+) and Helios(+)) and activated cytotoxic T cells (CD8(+)/HLA-DR(+)/CD38(+)) when compared to PBL and an increase in IL-6 mRNA from CD4 TIL.
RESUMEN
T cell-mediated rejection of tumors requires signals from the T cell receptor and co-stimulatory molecules to license effector functions of tumor-antigen specific T cells. There is also an array of immune suppressive mechanisms within the tumor microenvironment that can suppress anti-tumor immunity. The use of monoclonal antibodies to overcome this suppression and/or enhance tumor-antigen specific T cell responses has shown promise in clinical trials. In particular, targeting co-stimulatory members of the tumor necrosis factor receptor (TNFR) family with agonist Abs enhances T cell function, which has led to encouraging therapeutic results in cancer-bearing hosts. These encouraging data establish TNFRs as important targets for enhancing tumor-specific immune responses in mice and man. This review will focus on agonists that target the TNFRs OX40, 4-1BB, and CD40.
Asunto(s)
Antígenos CD40/inmunología , Inmunoterapia , Neoplasias/inmunología , Neoplasias/terapia , Receptores OX40/inmunología , Miembro 9 de la Superfamilia de Receptores de Factores de Necrosis Tumoral/inmunología , Animales , Humanos , Neoplasias/patología , Linfocitos T/inmunologíaRESUMEN
OX40 is a potent costimulatory receptor that can potentiate T-cell receptor signaling on the surface of T lymphocytes, leading to their activation by a specifically recognized antigen. In particular, OX40 engagement by ligands present on dendritic cells dramatically increases the proliferation, effector function, and survival of T cells. Preclinical studies have shown that OX40 agonists increase antitumor immunity and improve tumor-free survival. In this study, we performed a phase I clinical trial using a mouse monoclonal antibody (mAb) that agonizes human OX40 signaling in patients with advanced cancer. Patients treated with one course of the anti-OX40 mAb showed an acceptable toxicity profile and regression of at least one metastatic lesion in 12 of 30 patients. Mechanistically, this treatment increased T and B cell responses to reporter antigen immunizations, led to preferential upregulation of OX40 on CD4(+) FoxP3(+) regulatory T cells in tumor-infiltrating lymphocytes, and increased the antitumor reactivity of T and B cells in patients with melanoma. Our findings clinically validate OX40 as a potent immune-stimulating target for treatment in patients with cancer, providing a generalizable tool to favorably influence the antitumor properties of circulating T cells, B cells, and intratumoral regulatory T cells.
Asunto(s)
Anticuerpos Monoclonales/administración & dosificación , Neoplasias/tratamiento farmacológico , Neoplasias/inmunología , Receptores OX40/antagonistas & inhibidores , Receptores OX40/inmunología , Animales , Anticuerpos Monoclonales/efectos adversos , Anticuerpos Monoclonales/inmunología , Antígenos de Neoplasias/inmunología , Linfocitos T CD4-Positivos/efectos de los fármacos , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD8-positivos/efectos de los fármacos , Linfocitos T CD8-positivos/inmunología , Relación Dosis-Respuesta Inmunológica , Humanos , Activación de Linfocitos/efectos de los fármacos , Ratones , Linfocitos T Reguladores/inmunologíaRESUMEN
The existence of tumor-specific T cells, as well as their ability to be primed in cancer patients, confirms that the immune response can be deployed to combat cancer. However, there are obstacles that must be overcome to convert the ineffective immune response commonly found in the tumor environment to one that leads to sustained destruction of tumor. Members of the tumor necrosis factor (TNF) superfamily direct diverse immune functions. OX40 and its ligand, OX40L, are key TNF members that augment T-cell expansion, cytokine production, and survival. OX40 signaling also controls regulatory T-cell differentiation and suppressive function. Studies over the past decade have demonstrated that OX40 agonists enhance antitumor immunity in preclinical models using immunogenic tumors; however, treatment of poorly immunogenic tumors has been less successful. Combining strategies that prime tumor-specific T cells together with OX40 signaling could generate and maintain a therapeutic antitumor immune response.