Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Mol Biol Evol ; 34(6): 1492-1504, 2017 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-28333290

RESUMEN

The genomes are folded in a complex three-dimensional (3D) structure. Some features of this organization are common for all eukaryotes, but little is known about its evolution. Here, we have studied the 3D organization and regulation of zebrafish globin gene domain and compared its organization and regulation with those of other vertebrate species. In birds and mammals, the α- and ß-globin genes are segregated into separate clusters located on different chromosomes and organized into chromatin domains of different types, whereas in cold-blooded vertebrates, including Danio rerio, α- and ß-globin genes are organized into common clusters. The major globin gene locus of Danio rerio is of particular interest as it is located in a genomic area that is syntenic in vertebrates and is controlled by a conserved enhancer. We have found that the major globin gene locus of Danio rerio is structurally and functionally segregated into two spatially distinct subloci harboring either adult or embryo-larval globin genes. These subloci demonstrate different organization at the level of chromatin domains and different modes of spatial organization, which appears to be due to selective interaction of the upstream enhancer with the sublocus harboring globin genes of the adult type. These data are discussed in terms of evolution of linear and 3D organization of gene clusters in vertebrates.


Asunto(s)
Cromatina/genética , Globinas/genética , Conformación Molecular , Animales , Evolución Biológica , Aves/genética , Cromosomas/genética , Evolución Molecular , Genoma , Mamíferos/genética , Familia de Multigenes/genética , Pez Cebra/genética , Globinas alfa/genética , Globinas beta/genética
2.
Histochem Cell Biol ; 145(4): 463-73, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26847176

RESUMEN

In Danio rerio, the alpha- and beta-globin genes are present in two clusters: a major cluster located on chromosome 3 and a minor cluster located on chromosome 12. In contrast to the segregated alpha- and beta-globin gene domains of warm-blooded animals, in Danio rerio, each cluster contains both alpha- and beta-globin genes. Expression of globin genes present in the major cluster is controlled by an erythroid-specific enhancer similar to the major regulatory element of mammalian and avian alpha-globin gene domains. The enhancer controlling expression of the globin genes present in the minor locus has not been identified yet. Based on the distribution of epigenetic marks, we have selected two genomic regions that might harbor an enhancer of the minor locus. Using transient transfection of constructs with a reporter gene, we have demonstrated that a ~500-bp DNA fragment located ~1.7 Kb upstream of the αe4 gene possesses an erythroid-specific enhancer active with respect to promoters present in both the major and the minor globin gene loci of Danio rerio. The identified enhancer element harbors clustered binding sites for GATA-1, NF-E2, and EKLF similar to the enhancer of the major globin locus on chromosome 3. Both enhancers appear to have emerged as a result of independent evolution of a duplicated regulatory element present in an ancestral single alpha-/beta-globin locus that existed before teleost-specific genome duplication.


Asunto(s)
Elementos de Facilitación Genéticos/genética , Pez Cebra/genética , Globinas alfa/genética , Globinas beta/genética , Animales , Sitios de Unión , Células Cultivadas , Embrión de Pollo , Pollos
3.
Biochimie ; 181: 96-99, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33321129

RESUMEN

We studied the repression of adult and embryo-larval genes of the major globin gene locus in D. rerio fibroblasts. The results obtained suggest that at least some of the globin genes are repressed by Polycomb, similarly to human α-globin genes. Furthermore, within two α/ß globin gene pairs, repression of α-type and ß-type genes appears to be mediated by different mechanisms, as increasing the level of histone acetylation can activate transcription of only ß-type genes.


Asunto(s)
Transcripción Genética , Proteínas de Pez Cebra/biosíntesis , Pez Cebra/metabolismo , Globinas alfa/biosíntesis , Globinas beta/biosíntesis , Animales , Pez Cebra/genética , Proteínas de Pez Cebra/genética , Globinas alfa/genética , Globinas beta/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA