Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Genomics ; 116(4): 110868, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38795738

RESUMEN

Hybrid sterility, a hallmark of postzygotic isolation, arises from parental genome divergence disrupting meiosis. While chromosomal incompatibility is often implicated, the underlying mechanisms remain unclear. This study investigated meiotic behavior and genome-wide divergence in bighead catfish (C. macrocephalus), North African catfish (C. gariepinus), and their sterile male hybrids (important in aquaculture). Repetitive DNA analysis using bioinformatics and cytogenetics revealed significant divergence in satellite DNA (satDNA) families between parental species. Notably, one hybrid exhibited successful meiosis and spermatozoa production, suggesting potential variation in sterility expression. Our findings suggest that genome-wide satDNA divergence, rather than chromosome number differences, likely contributes to meiotic failure and male sterility in these catfish hybrids.


Asunto(s)
Bagres , ADN Satélite , Hibridación Genética , Meiosis , Animales , Bagres/genética , Masculino , ADN Satélite/genética , Infertilidad Masculina/genética , Infertilidad Masculina/veterinaria , Genoma , Pueblo Norteafricano
2.
Chromosome Res ; 31(4): 29, 2023 09 30.
Artículo en Inglés | MEDLINE | ID: mdl-37775555

RESUMEN

Microsatellites are short tandem DNA repeats, ubiquitous in genomes. They are believed to be under selection pressure, considering their high distribution and abundance beyond chance or random accumulation. However, limited analysis of microsatellites in single taxonomic groups makes it challenging to understand their evolutionary significance across taxonomic boundaries. Despite abundant genomic information, microsatellites have been studied in limited contexts and within a few species, warranting an unbiased examination of their genome-wide distribution in distinct versus closely related-clades. Large-scale comparisons have revealed relevant trends, especially in vertebrates. Here, "MicrosatNavigator", a new tool that allows quick and reliable investigation of perfect microsatellites in DNA sequences, was developed. This tool can identify microsatellites across the entire genome sequences. Using this tool, microsatellite repeat motifs were identified in the genome sequences of 186 vertebrates. A significant positive correlation was noted between the abundance, density, length, and GC bias of microsatellites and specific lineages. The (AC)n motif is the most prevalent in vertebrate genomes, showing distinct patterns in closely related species. Longer microsatellites were observed on sex chromosomes in birds and mammals but not on autosomes. Microsatellites on sex chromosomes of non-fish vertebrates have the lowest GC content, whereas high-GC microsatellites (≥ 50 M% GC) are preferred in bony and cartilaginous fishes. Thus, similar selective forces and mutational processes may constrain GC-rich microsatellites to different clades. These findings should facilitate investigations into the roles of microsatellites in sex chromosome differentiation and provide candidate microsatellites for functional analysis across the vertebrate evolutionary spectrum.


Asunto(s)
Genoma , Vertebrados , Animales , Vertebrados/genética , Repeticiones de Microsatélite , Cromosomas Sexuales/genética , Genómica , Mamíferos/genética
3.
Genomics ; 113(1 Pt 2): 624-636, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33002626

RESUMEN

Elucidation of the process of sex chromosome differentiation is necessary to understand the dynamics of evolutionary mechanisms in organisms. The W sex chromosome of the Siamese cobra (Naja kaouthia) contains a large number of repeats and shares amniote sex chromosomal linkages. Diversity Arrays Technology provides an effective approach to identify sex-specific loci that are epoch-making, to understand the dynamics of molecular transitions between the Z and W sex chromosomes in a snake lineage. From a total of 543 sex-specific loci, 90 showed partial homology with sex chromosomes of several amniotes and 89 loci were homologous to transposable elements. Two loci were confirmed as W-specific nucleotides after PCR amplification. These loci might result from a sex chromosome differentiation process and involve putative sex-determination regions in the Siamese cobra. Sex-specific loci shared linkage homologies among amniote sex chromosomes, supporting an ancestral super-sex chromosome.


Asunto(s)
Evolución Molecular , Naja naja/genética , Polimorfismo de Nucleótido Simple , Cromosomas Sexuales/genética , Animales , Naja naja/clasificación , Filogenia
4.
Genomics ; 112(5): 3097-3107, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32470643

RESUMEN

Centromeric satellite DNA (cen-satDNA) sequences of the Asian swamp eel (Monopterus albus) were characterized. Three GC-rich cen-satDNA sequences were detected as a 233 bp MALREP-A and a 293 bp MALREP-B localized to all chromosomes, and a 293 bp MALREP-C distributed on eight chromosome pairs. Sequence lengths of MALREP-B and MALREP-C were 60 bp larger than that of MALREP-A, showing partial homology with core sequences (233 bp). Size differences between MALREP-A and MALREP-B/C suggest the possible occurrence of two satDNA families. The presence of an additional 60 bp in MALREP-B/C resulted from an ancient dimer of 233 bp monomers and subsequent mutation and homogenization between the two monomers. All MALREPs showed partial homology with transposable elements (TEs), suggesting that the MALREPs originated from the TEs. The MALREPs might have been acquired in the Asian swamp eel, thereby promoting fixation in the species.


Asunto(s)
Centrómero/química , ADN Satélite/química , Secuencias Repetitivas Esparcidas , Smegmamorpha/genética , Animales , Mapeo Cromosómico , Secuencia de Consenso , Genómica , Secuencias Repetitivas de Ácidos Nucleicos , Análisis de Secuencia de ADN , Vertebrados/genética
5.
Mol Phylogenet Evol ; 99: 261-274, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-27033947

RESUMEN

Identifying factors that influence species interactions is central to research in symbiotic systems. While lichens represent iconic models of symbiosis and play important roles in understanding the biology of symbiotic interactions, patterns of interactions in lichen symbionts and mechanisms governing these relationships are not well characterized. This is due, in part to the fact that current taxonomic approaches for recognizing diversity in lichen symbionts commonly fail to accurately reflect actual species diversity. In this study, we employed DNA-based approaches to circumscribed candidate species-level lineages in rock-posy lichen symbionts (mycobiont=Rhizoplaca s. lat. species; photobiont=Trebouxia species). Our results revealed a high degree of cryptic diversity in both the myco- and photobionts in these lichens. Using the candidate species circumscribed here, we investigated the specificity of the symbionts toward their partners and inferred the relative importance of various factors influencing symbiont interactions. Distinct mycobiont species complexes, ecozones, and biomes are significantly correlated with the occurrence of photobiont OTUs, indicating that complex interactions among mycobiont lineages, ecogeography, and microhabitat determine interactions between photobionts and their mycobionts in lichen symbiosis. One-to-one specificity between mycobiont and photobiont species was not found, with the exception of R. maheui that associated with a single Trebouxia OTU that was not found with other Rhizoplaca s. lat. species. We estimated the most recent common ancestor of the core Rhizoplaca group at c. 62.5Ma, similar in age to the diverse parmelioid core group in the well-studied family Parmeliaceae. However, in contrast to Parmeliaceae, species in Rhizoplaca were found to associate with a narrow range of photobionts. Our study provides important perspectives into species diversity and interactions in iconic lichen symbiotic systems and establishes a valuable framework for continuing research into rock-posy lichens.


Asunto(s)
Chlorophyta/fisiología , Líquenes/fisiología , Simbiosis , Biodiversidad , Chlorophyta/clasificación , ADN de Hongos/química , ADN de Hongos/aislamiento & purificación , ADN de Hongos/metabolismo , Líquenes/clasificación , Líquenes/genética , Filogenia , Análisis de Secuencia de ADN
6.
Mol Ecol ; 24(14): 3779-97, 2015 07.
Artículo en Inglés | MEDLINE | ID: mdl-26073165

RESUMEN

Microbial symbionts are instrumental to the ecological and long-term evolutionary success of their hosts, and the central role of symbiotic interactions is increasingly recognized across the vast majority of life. Lichens provide an iconic group for investigating patterns in species interactions; however, relationships among lichen symbionts are often masked by uncertain species boundaries or an inability to reliably identify symbionts. The species-rich lichen-forming fungal family Parmeliaceae provides a diverse group for assessing patterns of interactions of algal symbionts, and our study addresses patterns of lichen symbiont interactions at the largest geographic and taxonomic scales attempted to date. We analysed a total of 2356 algal internal transcribed spacer (ITS) region sequences collected from lichens representing ten mycobiont genera in Parmeliaceae, two genera in Lecanoraceae and 26 cultured Trebouxia strains. Algal ITS sequences were grouped into operational taxonomic units (OTUs); we attempted to validate the evolutionary independence of a subset of the inferred OTUs using chloroplast and mitochondrial loci. We explored the patterns of symbiont interactions in these lichens based on ecogeographic distributions and mycobiont taxonomy. We found high levels of undescribed diversity in Trebouxia, broad distributions across distinct ecoregions for many photobiont OTUs and varying levels of mycobiont selectivity and specificity towards the photobiont. Based on these results, we conclude that fungal specificity and selectivity for algal partners play a major role in determining lichen partnerships, potentially superseding ecology, at least at the ecogeographic scale investigated here. To facilitate effective communication and consistency across future studies, we propose a provisional naming system for Trebouxia photobionts and provide representative sequences for each OTU circumscribed in this study.


Asunto(s)
Evolución Biológica , Chlorophyta/clasificación , Líquenes/microbiología , Simbiosis , Chlorophyta/genética , ADN de Algas/genética , ADN de Cloroplastos/genética , ADN Mitocondrial/genética , ADN Espaciador Ribosómico/genética , Ecosistema , Hongos/genética , Geografía , Datos de Secuencia Molecular , Filogenia , Análisis de Secuencia de ADN
7.
Genes Genomics ; 46(1): 95-112, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37985545

RESUMEN

BACKGROUND: In nucleotide public repositories, studies discovered data errors which resulted in incorrect species identification of several accipitrid raptors considered for conservation. Mislabeling, particularly in cases of cryptic species complexes and closely related species, which were identified based on morphological characteristics, was discovered. Prioritizing accurate species labeling, morphological taxonomy, and voucher documentation is crucial to rectify spurious data. OBJECTIVE: Our study aimed to identify an effective DNA barcoding tool that accurately reflects the efficiency status of barcodes in raptor species (Accipitridae). METHODS: Barcode sequences, including 889 sequences from the mitochondrial cytochrome c oxidase I (COI) gene and 1052 sequences from cytochrome b (Cytb), from 150 raptor species within the Accipitridae family were analyzed. RESULTS: The highest percentage of intraspecific nearest neighbors from the nearest neighbor test was 88.05% for COI and 95.00% for Cytb, suggesting that the Cytb gene is a more suitable marker for accurately identifying raptor species and can serve as a standard region for DNA barcoding. In both datasets, a positive barcoding gap representing the difference between inter-and intra-specific sequence divergences was observed. For COI and Cytb, the cut-off score sequence divergences for species identification were 4.00% and 3.00%, respectively. CONCLUSION: Greater accuracy was demonstrated for the Cytb gene, making it the preferred primary DNA barcoding marker for raptors.


Asunto(s)
Código de Barras del ADN Taxonómico , ADN , Código de Barras del ADN Taxonómico/métodos , Secuencia de Bases , Genes Mitocondriales , Complejo IV de Transporte de Electrones/genética , Citocromos b/genética
8.
PLoS One ; 19(5): e0302584, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38709757

RESUMEN

The North African catfish (Clarias gariepinus) is a significant species in aquaculture, which is crucial for ensuring food and nutrition security. Their high adaptability to diverse environments has led to an increase in the number of farms that are available for their production. However, long-term closed breeding adversely affects their reproductive performance, leading to a decrease in production efficiency. This is possibly caused by inbreeding depression. To investigate the root cause of this issue, the genetic diversity of captive North African catfish populations was assessed in this study. Microsatellite genotyping and mitochondrial DNA D-loop sequencing were applied to 136 catfish specimens, collected from three populations captured for breeding in Thailand. Interestingly, extremely low inbreeding coefficients were obtained within each population, and distinct genetic diversity was observed among the three populations, indicating that their genetic origins are markedly different. This suggests that outbreeding depression by genetic admixture among currently captured populations of different origins may account for the low productivity of the North African catfish in Thailand. Genetic improvement of the North African catfish populations is required by introducing new populations whose origins are clearly known. This strategy should be systematically integrated into breeding programs to establish an ideal founder stock for selective breeding.


Asunto(s)
Bagres , ADN Mitocondrial , Variación Genética , Endogamia , Repeticiones de Microsatélite , Animales , Acuicultura , Bagres/genética , ADN Mitocondrial/genética , Genotipo , Repeticiones de Microsatélite/genética , Tailandia
9.
PeerJ ; 11: e16284, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37901454

RESUMEN

Background: The genus Aneura Dumort. is a simple thalloid liverwort with cosmopolitan distributions. Species circumscription is problematic in this genus due to a limited number of morphological traits. Two species are currently reported from Thailand, including A. maxima and A. pinguis. At the global scale, A. pinguis is considered a cryptic species, as the species contains several distinct genetic groups without clear morphological differentiation. At the same time, the identity of A. maxima remains unclear. In this work, we examined the level of diversity of Aneura species found in Thailand using both morphological and molecular data. Methods: We measured the morphological traits and generated the molecular data (four markers: trnL-F, trnH-psbA, rbcL, and ITS2) from the Thai specimens. The concatenated dataset was then used to reconstruct phylogeny. Species delimitation with GMYC, bPTP, ASAP, and ABGD methods was performed to estimate the number of putative species within the genus. Results: The samples of A. pinguis formed several clades, while A. maxima sequences from Poland were grouped in their clade and nested within another A. pinguis clade. We could not recover a sample of A. maxima from Thailand, even from the reported locality. Two putative species were detected among Thai Aneura samples. However, no morphological trait could distinguish the specimens from the two observed genetic groups. Discussion: The previously observed paraphyletic nature of A. pinguis globally was also found among Thai samples, including several putative species. However, we could not confirm the identity of A. maxima from Thai specimens. The previous report could result from misidentification and problematic species circumscription within Aneura. The results highlighted the need to include multiple lines of evidence for the future taxonomic investigation of the group.


Asunto(s)
Hepatophyta , Hepatophyta/genética , Tailandia , Filogenia , Polonia
10.
PhytoKeys ; 222: 27-47, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37252643

RESUMEN

Leucobryumscalare was described in 1904 but its taxonomic status has been disputed, being reduced to a variety of Leucobryumaduncum or synonymized with Leucobryumaduncum. The taxonomic confusion of this taxon has remained unresolved. Hence, we revisited the taxonomic status of the taxon using phylogenetic and morphometric approaches. A total of 27 samples from Leucobryumaduncumvar.aduncum and Leucobryumaduncumvar.scalare were used to generate data from four markers, including ITS1, ITS2, atpB-rbcL spacer, and trnL-trnF. The concatenated dataset was used to reconstruct a phylogenetic tree. Both qualitative and quantitative morphological characters were measured and analyzed with Principal Component Analysis (PCA) and PERMANOVA. The results showed that the two taxa are closely related but they are reciprocally monophyletic. Both qualitative and quantitative characters could also separate Leucobryumaduncumvar.scalare from Leucobryumaduncumvar.aduncum as shown with PCA and PERMANOVA. We propose the resurrection of the species rank for Leucobryumscalare as separate from Leucobryumaduncum. This work highlights the need for a more thorough revision of Leucobryum to clarify the actual level of diversity in this genus.

11.
Genes Genomics ; 45(2): 169-181, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36512198

RESUMEN

BACKGROUND: The number of nucleotide sequences in public repositories has exploded recently. However, the data contain errors, leading to incorrect species identification. Several fighting fish (Betta spp.) are poorly described, with unresolved cryptic species complexes masking undescribed species. Here, DNA barcoding was used to detect erroneous sequences in public repositories. OBJECTIVE: This study reflects the current quantitative and qualitative status of DNA barcoding in fighting fish and provides a rapid and reliable identification tool. METHODS: A total of 1034 barcode sequences were analyzed from mitochondrial cytochrome c oxidase I (COI) and cytochrome b (Cytb) genes from 71 fighting fish species. RESULTS: The nearest neighbor test showed the highest percentage of intraspecific nearest neighbors at 93.41% for COI and 91.67% for Cytb, which can be used as reference barcodes for certain taxa. Intraspecific variation was usually less than 13%, while most species differed by more than 54%. The barcoding gap, calculated from the difference between inter- and intraspecific sequence divergences, was negative in the COI data set indicating overlapping intra- and interspecific sequence divergence. Sequence saturation was observed in the Cytb data set but not in the COI data set. CONCLUSION: The COI gene should thus be used as the main barcoding marker for fighting fish.


Asunto(s)
Código de Barras del ADN Taxonómico , ADN , Animales , Secuencia de Bases , Control de Calidad , Mitocondrias/genética , Peces/genética , Citocromos b/genética
12.
Biology (Basel) ; 12(11)2023 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-37998027

RESUMEN

Hybrids between the critically endangered Siamese crocodile (Crocodylus siamensis) and least-concern saltwater crocodile (C. porosus) in captive populations represent a serious challenge for conservation and reintroduction programs due to the impact of anthropogenic activities. A previous study used microsatellite and mitochondrial DNA data to establish the criteria for identifying species and their hybrids; however, the results may have been influenced by biased allelic frequencies and genetic drift within the examined population. To overcome these limitations and identify the true signals of selection, alternative DNA markers and a diverse set of populations should be employed. Therefore, this study used DArT sequencing to identify genome-wide single nucleotide polymorphisms (SNPs) in both species and confirm the genetic scenario of the parental species and their hybrids. A population of saltwater crocodiles from Australia was used to compare the distribution of species-diagnostic SNPs. Different analytical approaches were compared to diagnose the level of hybridization when an admixture was present, wherein three individuals had potential backcrossing. Approximately 17.00-26.00% of loci were conserved between the Siamese and saltwater crocodile genomes. Species-diagnostic SNP loci for Siamese and saltwater crocodiles were identified as 8051 loci and 1288 loci, respectively. To validate the species-diagnostic SNP loci, a PCR-based approach was used by selecting 20 SNP loci for PCR primer design, among which 3 loci were successfully able to differentiate the actual species and different hybridization levels. Mitochondrial and nuclear genetic information, including microsatellite genotyping and species-diagnostic DNA markers, were combined as a novel method that can compensate for the limitations of each method. This method enables conservation prioritization before release into the wild, thereby ensuring sustainable genetic integrity for long-term species survival through reintroduction and management programs.

13.
Biology (Basel) ; 12(10)2023 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-37886990

RESUMEN

Microsatellites are polymorphic and cost-effective. Optimizing reduced microsatellite panels using heuristic algorithms eases budget constraints in genetic diversity and population genetic assessments. Microsatellite marker efficiency is strongly associated with its polymorphism and is quantified as the polymorphic information content (PIC). Nevertheless, marker selection cannot rely solely on PIC. In this study, the ant colony optimization (ACO) algorithm, a widely recognized optimization method, was adopted to create an enhanced selection scheme for refining microsatellite marker panels, called the PIC-ACO selection scheme. The algorithm was fine-tuned and validated using extensive datasets of chicken (Gallus gallus) and Chinese gorals (Naemorhedus griseus) from our previous studies. In contrast to basic optimization algorithms that stochastically initialize potential outputs, our selection algorithm utilizes the PIC values of markers to prime the ACO process. This increases the global solution discovery speed while reducing the likelihood of becoming trapped in local solutions. This process facilitated the acquisition of a cost-efficient and optimized microsatellite marker panel for studying genetic diversity and population genetic datasets. The established microsatellite efficiency metrics such as PIC, allele richness, and heterozygosity were correlated with the actual effectiveness of the microsatellite marker panel. This approach could substantially reduce budgetary barriers to population genetic assessments, breeding, and conservation programs.

14.
Genomics Inform ; 21(4): e47, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38224714

RESUMEN

Silver barb (Barbonymus gonionotus) is among the most economically important freshwater fish species in Thailand. It ranks fourth in economic value and third in production weight for fisheries and culture in Thailand. An XX/XY sex-determination system based on gynogenesis was previously reported for this fish. In this study, the molecular basis underlying the sex-determination system was further investigated. Genome-wide single-nucleotide polymorphism data were generated for 32 captive-bred silver barb individuals, previously scored by phenotypic sex, to identify sex-linked regions associated with sex determination. Sixty-three male-linked loci, indicating putative XY chromosomes, were identified. Male-specific loci were not observed, which indicates that the putative Y chromosome is young and the sex determination region is cryptic. A homology search revealed that most male-linked loci were homologous to the Mariner/Tc1 and Gypsy transposable elements and are probably the remnants of an initial accumulation of repeats on the Y chromosome from the early stages of sex chromosome differentiation. This research provides convincing insights into the mechanism of sex determination and reveals the potential sex determination regions in silver barb. The study provides the basic data necessary for increasing the commercial value of silver barbs through genetic improvements.

15.
Genomics Inform ; 21(3): e39, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37813635

RESUMEN

DNA barcoding without assessing reliability and validity causes taxonomic errors of species identification, which is responsible for disruptions of their conservation and aquaculture industry. Although DNA barcoding facilitates molecular identification and phylogenetic analysis of species, its availability in clariid catfish lineage remains uncertain. In this study, DNA barcoding was developed and validated for clariid catfish. 2,970 barcode sequences from mitochondrial cytochrome c oxidase I (COI) and cytochrome b (Cytb) genes and D-loop sequences were analyzed for 37 clariid catfish species. The highest intraspecific nearest neighbor distances were 85.47%, 98.03%, and 89.10% for COI, Cytb, and D-loop sequences, respectively. This suggests that the Cytb gene is the most appropriate for identifying clariid catfish and can serve as a standard region for DNA barcoding. A positive barcoding gap between interspecific and intraspecific sequence divergence was observed in the Cytb dataset but not in the COI and D-loop datasets. Intraspecific variation was typically less than 4.4%, whereas interspecific variation was generally more than 66.9%. However, a species complex was detected in walking catfish and significant intraspecific sequence divergence was observed in North African catfish. These findings suggest the need to focus on developing a DNA barcoding system for classifying clariid catfish properly and to validate its efficacy for a wider range of clariid catfish. With an enriched database of multiple sequences from a target species and its genus, species identification can be more accurate and biodiversity assessment of the species can be facilitated.

16.
Am J Bot ; 99(9): 1436-44, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22912371

RESUMEN

PREMISE OF THE STUDY: Many links between form and function are described in the context of adaptation. Several morphological and life-history traits in the leafy liverwort family Lejeuneaceae (Marchantiophyta) have been hypothesized to be adaptations for living on the surface of leaves of vascular plants (epiphylly). There have been, however, no rigorous tests of these hypotheses. METHODS: Using a recently published phylogeny of Lejeuneaceae and trait data from published monographs, I tested the correlations of putative adaptive traits with the incidence of epiphylly. Both cross-species and phylogenetic-based analyses of trait data were performed to distinguish the patterns of shared evolutionary history from independent origins of putatively adaptive traits. The rates of transitions between different combinations of character states were also calculated to determine whether traits were more likely to evolve in the presence of epiphylly. KEY RESULTS: Only one trait, production of asexual propagules, was correlated with epiphylly in the phylogenetic-based analysis. The rate of transition to asexual propagules was also significantly higher in the presence of epiphylly. Other traits correlated with epiphylly appeared to be the results of shared evolutionary history among sister taxa and therefore not due to adaptive evolution. CONCLUSION: The present study distinguished production of asexual propagules from other traits as a key adaptive response to living on the leaf surface. No other putative "adaptive" traits to epiphylly showed evidence of being specific adaptation to epiphylly. The results highlight the importance of phylogenetically controlled methods in determining an adaptive function of traits.


Asunto(s)
Adaptación Fisiológica , Hepatophyta/fisiología , Hojas de la Planta/fisiología , Carácter Cuantitativo Heredable , Reproducción Asexuada/fisiología , Evolución Biológica , Funciones de Verosimilitud , Modelos Biológicos , Filogenia , Especificidad de la Especie , Clima Tropical
17.
Cells ; 11(11)2022 05 27.
Artículo en Inglés | MEDLINE | ID: mdl-35681459

RESUMEN

Fishes provide a unique and intriguing model system for studying the genomic origin and evolutionary mechanisms underlying sex determination and high sex-chromosome turnover. In this study, the mode of sex determination was investigated in Siamese fighting fish, a species of commercial importance. Genome-wide SNP analyses were performed on 75 individuals (40 males and 35 females) across commercial populations to determine candidate sex-specific/sex-linked loci. In total, 73 male-specific loci were identified and mapped to a 5.6 kb region on chromosome 9, suggesting a putative male-determining region (pMDR) containing localized dmrt1 and znrf3 functional sex developmental genes. Repeat annotations of the pMDR revealed an abundance of transposable elements, particularly Ty3/Gypsy and novel repeats. Remarkably, two out of the 73 male-specific loci were located on chromosomes 7 and 19, implying the existence of polygenic sex determination. Besides male-specific loci, five female-specific loci on chromosome 9 were also observed in certain populations, indicating the possibility of a female-determining region and the polygenic nature of sex determination. An alternative explanation is that male-specific loci derived from other chromosomes or female-specific loci in Siamese fighting fish recently emerged as new sex-determining loci during domestication and repeated hybridization.


Asunto(s)
Peces , Análisis para Determinación del Sexo , Animales , Femenino , Peces/genética , Genoma/genética , Genómica , Masculino , Cromosomas Sexuales/genética
18.
Cells ; 11(12)2022 06 17.
Artículo en Inglés | MEDLINE | ID: mdl-35741082

RESUMEN

Centromeric satellite DNA (cen-satDNA) consists of highly divergent repeat monomers, each approximately 171 base pairs in length. Here, we investigated the genetic diversity in the centromeric region of two primate species: long-tailed (Macaca fascicularis) and rhesus (Macaca mulatta) macaques. Fluorescence in situ hybridization and bioinformatic analysis showed the chromosome-specific organization and dynamic nature of cen-satDNAsequences, and their substantial diversity, with distinct subfamilies across macaque populations, suggesting increased turnovers. Comparative genomics identified high level polymorphisms spanning a 120 bp deletion region and a remarkable interspecific variability in cen-satDNA size and structure. Population structure analysis detected admixture patterns within populations, indicating their high divergence and rapid evolution. However, differences in cen-satDNA profiles appear to not be involved in hybrid incompatibility between the two species. Our study provides a genomic landscape of centromeric repeats in wild macaques and opens new avenues for exploring their impact on the adaptive evolution and speciation of primates.


Asunto(s)
ADN Satélite , Genómica , Animales , ADN Satélite/genética , Hibridación Fluorescente in Situ , Macaca fascicularis/genética , Macaca mulatta/genética
19.
Animals (Basel) ; 12(2)2022 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-35049770

RESUMEN

Duplicate control regions (CRs) have been observed in the mitochondrial genomes (mitogenomes) of most varanids. Duplicate CRs have evolved in either concerted or independent evolution in vertebrates, but whether an evolutionary pattern exists in varanids remains unknown. Therefore, we conducted this study to analyze the evolutionary patterns and phylogenetic utilities of duplicate CRs in 72 individuals of Varanus salvator macromaculatus and other varanids. Sequence analyses and phylogenetic relationships revealed that divergence between orthologous copies from different individuals was lower than in paralogous copies from the same individual, suggesting an independent evolution of the two CRs. Distinct trees and recombination testing derived from CR1 and CR2 suggested that recombination events occurred between CRs during the evolutionary process. A comparison of substitution saturation showed the potential of CR2 as a phylogenetic marker. By contrast, duplicate CRs of the four examined varanids had similar sequences within species, suggesting typical characteristics of concerted evolution. The results provide a better understanding of the molecular evolutionary processes related to the mitogenomes of the varanid lineage.

20.
PeerJ ; 10: e13270, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35573170

RESUMEN

Background: Disturbances are crucial in determining forest biodiversity, dynamics, and ecosystem functions. Surface fire is a significant disturbance in tropical forests, but research on the effect of surface fire on structuring species and functional composition in a community through time remains scarce. Using a 20-year dataset of tree demography in a seasonal evergreen tropical forest in Thailand, we specifically addressed two essential questions: (1) What is the pattern of temporal turnover in species and functional composition in a community with frequent fire disturbance? (2) How did the temporal turnover vary with tree size? Methods: We analyzed species compositional and functional temporal turnovers in four different tree size classes among five tree censuses. We quantified species turnover by calculating Bray-Curtis dissimilarity, and investigated its underlying mechanisms by comparing pairwise dissimilarity of functional traits with simulations from null models. If fire disturbances contribute more to a stochastic process, the functional composition would display a random pattern. However, if they contribute more towards a deterministic process, the functional composition should reveal a non-random pattern. Results: Over 20 years (1994-2014), we observed changes in species composition, whereas functional composition remained relatively stable. The temporal turnover patterns of species and functional compositions varied with tree sizes. In particular, temporal functional turnover shifted very little for large trees, suggesting that changes in species composition of larger trees are contributed by species with similar functional traits through time. The temporal functional composition turnovers of smaller trees (DBH ≤ 5 cm) were mostly at random. We detected a higher functional turnover than expected by null models in some quadrats throughout the 50-ha study plot, and their observed turnover varied with diameter classes. Conclusions: Species compositional changes were caused by changes in the abundance of species with similar functional traits through time. Temporal functional turnover in small trees was random in most quadrats, suggesting that the recruits came from the equal proportions of surviving trees and new individuals of fast-growing species, which increased rapidly after fires. On the other hand, functional composition in big trees was more likely determined by surviving trees which maintained higher functional similarities than small trees through time. Fire disturbance is important for ecosystem functions, as changing forest fire frequency may alter forest turnover, particularly in functional composition in the new recruits of this forest.


Asunto(s)
Incendios , Árboles , Humanos , Ecosistema , Bosques , Biodiversidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA