Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Eur J Nucl Med Mol Imaging ; 49(13): 4338-4357, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35852558

RESUMEN

PURPOSE: Modern neuroimaging lacks the tools necessary for whole-brain, anatomically dense neuronal damage screening. An ideal approach would include unbiased histopathologic identification of aging and neurodegenerative disease. METHODS: We report the postmortem application of multiscale X-ray phase-contrast computed tomography (X-PCI-CT) for the label-free and dissection-free organ-level to intracellular-level 3D visualization of distinct single neurons and glia. In deep neuronal populations in the brain of aged wild-type and of 3xTgAD mice (a triply-transgenic model of Alzheimer's disease), we quantified intracellular hyperdensity, a manifestation of aging or neurodegeneration. RESULTS: In 3xTgAD mice, the observed hyperdensity was identified as amyloid-ß and hyper-phosphorylated tau protein deposits with calcium and iron involvement, by correlating the X-PCI-CT data to immunohistochemistry, X-ray fluorescence microscopy, high-field MRI, and TEM. As a proof-of-concept, X-PCI-CT was used to analyze hippocampal and cortical brain regions of 3xTgAD mice treated with LY379268, selective agonist of group II metabotropic glutamate receptors (mGlu2/3 receptors). Chronic pharmacologic activation of mGlu2/3 receptors significantly reduced the hyperdensity particle load in the ventral cortical regions of 3xTgAD mice, suggesting a neuroprotective effect with locoregional efficacy. CONCLUSIONS: This multiscale micro-to-nano 3D imaging method based on X-PCI-CT enabled identification and quantification of cellular and sub-cellular aging and neurodegeneration in deep neuronal and glial cell populations in a transgenic model of Alzheimer's disease. This approach quantified the localized and intracellular neuroprotective effects of pharmacological activation of mGlu2/3 receptors.


Asunto(s)
Enfermedad de Alzheimer , Enfermedades Neurodegenerativas , Fármacos Neuroprotectores , Receptores de Glutamato Metabotrópico , Animales , Ratones , Enfermedad de Alzheimer/diagnóstico por imagen , Enfermedad de Alzheimer/patología , Calcio , Senescencia Celular , Hierro , Ratones Transgénicos , Neuroimagen , Fármacos Neuroprotectores/farmacología , Receptores de Glutamato Metabotrópico/agonistas , Receptores de Glutamato Metabotrópico/metabolismo , Proteínas tau/metabolismo , Rayos X
2.
J Neurosci Methods ; 339: 108744, 2020 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-32353471

RESUMEN

BACKGROUND: Dense and unbiased cellular-resolution representations of extended volumetric central nervous system soft-tissue anatomy are difficult to obtain, even in experimental post-mortem settings. Interestingly, X-ray phase-contrast computed tomography (X-PCI-CT), an emerging soft-tissue-sensitive volumetric imaging technique, can provide multiscale organ- to cellular-level morphological visualizations of neuroanatomical structure. NEW METHOD: Here, we tested different nervous-tissue fixation procedures, conventionally used for transmission electron microscopy, to better establish X-PCI-CT-specific sample-preparation protocols. Extracted rat spinal medullas were alternatively fixed with a standard paraformaldehyde-only aldehyde-based protocol, or in combination with glutaraldehyde. Some specimens were additionally post-fixed with osmium tetroxide. Multiscale X-PCI-CT datasets were collected at several synchrotron radiation facilities, using state-of-the-art setups with effective image voxel sizes of 3.03 to 0.33 µm3, and compared to high-field magnetic resonance imaging, histology and vascular fluorescence microscopy data. RESULTS: Multiscale X-PCI-CT of aldehyde-fixed spinal cord specimens resulted in dense histology-like volumetric representations and quantifications of extended deep spinal micro-vascular networks and of intra-medullary cell populations. Osmium post-fixation increased intra-medullary contrast between white and gray-matter tissues, and enhanced delineation of intra-medullary cellular structure, e.g. axon fibers and motor neuron perikarya. COMPARISON WITH EXISTING METHODS: Volumetric X-PCI-CT provides complementary contrast and higher spatial resolution compared to 9.4 T MRI. X-PCI-CT's advantage over planar histology is the volumetric nature of the cellular-level data obtained, using samples much larger than those fit for volumetric vascular fluorescence microscopy. CONCLUSIONS: Deliberately choosing (post-)fixation protocols tailored for optimal nervous-tissue structural preservation is of paramount importance in achieving effective and targeted neuroimaging via the X-PCI-CT technique.


Asunto(s)
Osmio , Intervención Coronaria Percutánea , Aldehídos , Animales , Ratas , Roedores , Médula Espinal/diagnóstico por imagen , Microtomografía por Rayos X , Rayos X
3.
Int J Radiat Oncol Biol Phys ; 101(4): 965-984, 2018 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-29976510

RESUMEN

PURPOSE: Experimental neuroimaging provides a wide range of methods for the visualization of brain anatomic morphology down to subcellular detail. Still, each technique-specific detection mechanism presents compromises among the achievable field-of-view size, spatial resolution, and nervous tissue sensitivity, leading to partial sample coverage, unresolved morphologic structures, or sparse labeling of neuronal populations and often also to obligatory sample dissection or other sample invasive manipulations. X-ray phase-contrast imaging computed tomography (PCI-CT) is an experimental imaging method that simultaneously provides micrometric spatial resolution, high soft-tissue sensitivity, and ex vivo full organ rodent brain coverage without any need for sample dissection, staining or labeling, or contrast agent injection. In the present study, we explored the benefits and limitations of PCI-CT use for in vitro imaging of normal and cancerous brain neuromorphology after in vivo treatment with synchrotron-generated x-ray microbeam radiation therapy (MRT), a spatially fractionated experimental high-dose radiosurgery. The goals were visualization of the MRT effects on nervous tissue and a qualitative comparison of the results to the histologic and high-field magnetic resonance imaging findings. METHODS AND MATERIALS: MRT was administered in vivo to the brain of both healthy and cancer-bearing rats. At 45 days after treatment, the brain was dissected out and imaged ex vivo using propagation-based PCI-CT. RESULTS: PCI-CT visualizes the brain anatomy and microvasculature in 3 dimensions and distinguishes cancerous tissue morphology, necrosis, and intratumor accumulation of iron and calcium deposits. Moreover, PCI-CT detects the effects of MRT throughout the treatment target areas (eg, the formation of micrometer-thick radiation-induced tissue ablation). The observed neurostructures were confirmed by histologic and immunohistochemistry examination and related to the micro-magnetic resonance imaging data. CONCLUSIONS: PCI-CT enabled a unique 3D neuroimaging approach for ex vivo studies on small animal models in that it concurrently delivers high-resolution insight of local brain tissue morphology in both normal and cancerous micro-milieu, localizes radiosurgical damage, and highlights the deep microvasculature. This method could assist experimental small animal neurology studies in the postmortem evaluation of neuropathology or treatment effects.


Asunto(s)
Neoplasias Encefálicas/diagnóstico por imagen , Neoplasias Encefálicas/radioterapia , Encéfalo/diagnóstico por imagen , Encéfalo/efectos de la radiación , Glioblastoma/diagnóstico por imagen , Glioblastoma/radioterapia , Neurorradiografía/métodos , Microtomografía por Rayos X/métodos , Animales , Encéfalo/irrigación sanguínea , Encéfalo/patología , Neoplasias Encefálicas/patología , Glioblastoma/patología , Imagen por Resonancia Magnética , Masculino , Microvasos/diagnóstico por imagen , Ratas , Ratas Endogámicas F344
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA