Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
An Acad Bras Cienc ; 90(1 Suppl 2): 1215-1231, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29791525

RESUMEN

Combination therapy drugs are considered a fundamental way to control malaria as it mimimizes the risk of emergence of resistance to the individual partner drugs. Consequently, this type of therapy constitutes a driving force for the discovery of new drugs with different modes of action, since this will provide options for combining different drugs to achieve the optimum antimalarial treatment. In this context, a 2,3,8-trisubstitued quinoline compound was found in a high throughput screen (HTS) to show an excellent inhibition of P. falciparum NF54 (IC50 = 22 nM) and low cytotoxicity. We performed a detailed evaluation of the substituents to improve the metabolic stability and solubility liabilities of the original hit and identified derivatives with enhanced physicochemical and/or PK properties and that maintained biological activity. However the high potency was not retained on testing against drug resistant plasmodium strains.


Asunto(s)
Antimaláricos/farmacología , Plasmodium falciparum/efectos de los fármacos , Quinolinas/farmacología , Animales , Antimaláricos/síntesis química , Antimaláricos/química , Diseño de Fármacos , Humanos , Pruebas de Sensibilidad Parasitaria , Quinolinas/síntesis química , Quinolinas/química , Ratas
2.
Eur J Med Chem ; 244: 114876, 2022 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-36343429

RESUMEN

Chagas disease is a major public health problem caused by Trypanosoma cruzi, with an estimated 6-7 million people infected and 70 million at risk of infection. T. brucei gambiense and T. brucei rhodesiense are two subspecies of related parasites that cause human African trypanosomiasis, a neglected tropical disease with also millions of people at risk of infection. Pharmacotherapy for both diseases suffers from low efficacy, side effects, or drug resistance. Recently, we reported a noncovalent competitive inhibitor of cruzain (IC50 26 µM, Ki 3 µM) and TbrCatL (IC50 50 µM), two cysteine proteases considered promising drug targets for trypanosomiasis. Here, we describe the design and synthesis of derivatives of our lead compound. The new thiosemicarbazone derivatives showed potency in the nanomolar concentration range against the two enzymes, but they were later characterized as aggregators. Nevertheless, the thiosemicarbazone derivatives showed promising antiparasitic activities against T. b. brucei (EC50 13-49.7 µM) and T. cruzi (EC50 0.027-0.59 µM) under in vitro conditions. The most active thiosemicarbazone was 200-fold more potent than the current anti-chagasic drug, benznidazole, and showed a selectivity index of 370 versus myoblast cells. We have identified an excellent candidate for further optimization and in vivo studies.


Asunto(s)
Enfermedad de Chagas , Tiosemicarbazonas , Tripanocidas , Trypanosoma brucei brucei , Trypanosoma cruzi , Humanos , Tripanocidas/farmacología , Tiosemicarbazonas/farmacología , Inhibidores de Cisteína Proteinasa/farmacología , Relación Estructura-Actividad , Enfermedad de Chagas/tratamiento farmacológico
3.
Eur J Med Chem ; 126: 929-936, 2017 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-28002775

RESUMEN

Phenotypic HTS campaigns with a blood stage malaria assay have been used to discover novel chemotypes for malaria treatment with potential alternative mechanisms of action compared to existing agents. N1-(5-(3-Chloro-4-fluorophenyl)furan-2-yl)-N3,N3-dimethylpropane-1,3-diamine, 1 was identified as a modest inhibitor of P. falciparum NF54 (IC50 = 875 nM) with an apparent long plasma half-life after high dose oral administration to mice, although the compound later showed poor metabolic stability in liver microsomes through ring- and side chain-oxidation and N-dealkylation. We describe here the synthesis of derivatives of 1, exploring the influence of substitution patterns around the aromatic ring, variations on the alkyl chain and modifications in the core heterocycle, in order to probe potency and metabolic stability, where 4k showed a long half-life in rats.


Asunto(s)
Antimaláricos/química , Antimaláricos/farmacología , Diseño de Fármacos , Furanos/química , Furanos/farmacología , Plasmodium falciparum/efectos de los fármacos , Aminas/química , Animales , Antimaláricos/metabolismo , Estabilidad de Medicamentos , Furanos/metabolismo , Semivida , Humanos , Ratones , Pruebas de Sensibilidad Parasitaria , Ratas , Relación Estructura-Actividad
4.
Chem Cent J ; 5: 53, 2011 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-21917164

RESUMEN

This paper reports a systematic study of the level of flavan-3-ol monomers during typical processing steps as cacao beans are dried, fermented and roasted and the results of Dutch-processing. Methods have been used that resolve the stereoisomers of epicatechin and catechin. In beans harvested from unripe and ripe cacao pods, we find only (-)-epicatechin and (+)-catechin with (-)-epicatechin being by far the predominant isomer. When beans are fermented there is a large loss of both (-)-epicatechin and (+)-catechin, but also the formation of (-)-catechin. We hypothesize that the heat of fermentation may, in part, be responsible for the formation of this enantiomer. When beans are progressively roasted at conditions described as low, medium and high roast conditions, there is a progressive loss of (-)-epicatechin and (+)-catechin and an increase in (-)-catechin with the higher roast levels. When natural and Dutch-processed cacao powders are analyzed, there is progressive loss of both (-)-epicatechin and (+)-catechin with lesser losses of (-)-catechin. We thus observe that in even lightly Dutch-processed powder, the level of (-)-catechin exceeds the level of (-)-epicatechin. The results indicate that much of the increase in the level of (-)-catechin observed during various processing steps may be the result of heat-related epimerization from (-)-epicatechin. These results are discussed with reference to the reported preferred order of absorption of (-)-epicatechin > (+)-catechin > (-)-catechin. These results are also discussed with respect to the balance that must be struck between the beneficial impact of fermentation and roasting on chocolate flavor and the healthful benefits of chocolate and cocoa powder that result in part from the flavan-3-ol monomers.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA