Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Apoptosis ; 28(1-2): 186-198, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36282364

RESUMEN

BACKGROUND: LACTB was recently identified as a mitochondrial tumour suppressor that negatively affects cancer cell proliferation by inducing cell death and/or differentiation, depending on the cell type and tissue. However, the detailed mechanism underlying the LACTB-induced cancer cell death is largely unknown. METHODS: We used cell-based, either in 2D or 3D conditions, and in vivo experiments to understand the LACTB mechanisms. In this regard, protein array followed by an enrichment analysis, cell proliferation assays using different compounds, western blot analysis, flow cytometry and immunofluorescence were performed. Differences between quantitative variables following normal distribution were valuated using Student t test for paired or no-paired samples according to the experiment. For in vivo experiments differences in tumour growth were analyzed by 2-way ANOVA. RESULTS: We show, that LACTB expression leads to cell cycle arrest in G1 phase and increase of DNA oxidation that leads to activation of intrinsic caspase-independent cell death pathway. This is achieved by an increase of mitochondrial reactive oxygen species since early time points of LACTB induction. CONCLUSION: Our work provides a deeper mechanistic insight into LACTB-mediated cancer-cell death and shows the dynamics of the cellular responses a particular tumor suppressive stimulus might evoke under different genetic landscapes.


Asunto(s)
Neoplasias de la Mama , Caspasas , Humanos , Femenino , Caspasas/genética , Caspasas/metabolismo , Apoptosis/genética , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Línea Celular Tumoral , Puntos de Control del Ciclo Celular , Especies Reactivas de Oxígeno/metabolismo , beta-Lactamasas/genética , beta-Lactamasas/metabolismo , Proteínas de la Membrana/genética , Proteínas Mitocondriales/genética
2.
Life Sci Alliance ; 6(1)2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36375842

RESUMEN

Epithelial-mesenchymal transition (EMT) is a cellular mechanism used by cancer cells to acquire migratory and stemness properties. In this study, we show, through in vitro, in vivo, and 3D culture experiments, that the mitochondrial protein LACTB manifests tumor suppressor properties in ovarian cancer. We show that LACTB is significantly down-regulated in epithelial ovarian cancer cells and clinical tissues. Re-expression of LACTB negatively effects the growth of cancer cells but not of non-tumorigenic cells. Mechanistically, we show that LACTB leads to differentiation of ovarian cancer cells and loss of their stemness properties, which is achieved through the inhibition of the EMT program and the LACTB-dependent down-regulation of Snail2/Slug transcription factor. This study uncovers a novel role of LACTB in ovarian cancer and proposes new ways of counteracting the oncogenic EMT program in this model system.


Asunto(s)
Transición Epitelial-Mesenquimal , Neoplasias Ováricas , Factores de Transcripción de la Familia Snail , beta-Lactamasas , Femenino , Humanos , beta-Lactamasas/genética , beta-Lactamasas/metabolismo , Carcinogénesis , Línea Celular Tumoral , Transición Epitelial-Mesenquimal/genética , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Neoplasias Ováricas/genética , Neoplasias Ováricas/metabolismo , Neoplasias Ováricas/patología , Factores de Transcripción de la Familia Snail/genética , Factores de Transcripción de la Familia Snail/metabolismo
3.
Cells ; 11(2)2022 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-35053339

RESUMEN

The mechanisms by which myelodysplastic syndrome (MDS) cells resist the effects of hypomethylating agents (HMA) are currently the subject of intensive research. A better understanding of mechanisms by which the MDS cell becomes to tolerate HMA and progresses to acute myeloid leukemia (AML) requires the development of new cellular models. From MDS/AML cell lines we developed a model of 5-azacytidine (AZA) resistance whose stability was validated by a transplantation approach into immunocompromised mice. When investigating mRNA expression and DNA variants of the AZA resistant phenotype we observed deregulation of several cancer-related pathways including the phosphatidylinosito-3 kinase signaling. We have further shown that these pathways can be modulated by specific inhibitors that, while blocking the proliferation of AZA resistant cells, are unable to increase their sensitivity to AZA. Our data reveal a set of molecular mechanisms that can be targeted to expand therapeutic options during progression on AZA therapy.


Asunto(s)
Azacitidina/farmacología , Resistencia a Antineoplásicos , Modelos Biológicos , Animales , ADN de Neoplasias/genética , Resistencia a Antineoplásicos/efectos de los fármacos , Resistencia a Antineoplásicos/genética , Ratones , Ratones SCID , Anotación de Secuencia Molecular , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Reproducibilidad de los Resultados , Transducción de Señal/efectos de los fármacos , Transcriptoma/genética
4.
Oncogene ; 40(14): 2539-2552, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33686239

RESUMEN

Pancreatic cancer is one of the deadliest forms of cancer, which is attributed to lack of effective treatment options and drug resistance. Mitochondrial inhibitors have emerged as a promising class of anticancer drugs, and several inhibitors of the electron transport chain (ETC) are being clinically evaluated. We hypothesized that resistance to ETC inhibitors from the biguanide class could be induced by inactivation of SMAD4, an important tumor suppressor involved in transforming growth factor ß (TGFß) signaling, and associated with altered mitochondrial activity. Here we show that, paradoxically, both TGFß-treatment and the loss of SMAD4, a downstream member of TGFß signaling cascade, induce resistance to biguanides, decrease mitochondrial respiration, and fragment the mitochondrial network. Mechanistically, the resistance of SMAD4-deficient cells is mediated by increased mitophagic flux driven by MAPK/ERK signaling, whereas TGFß-induced resistance is autophagy-independent and linked to epithelial-to-mesenchymal transition (EMT). Interestingly, mitochondria-targeted tamoxifen, a complex I inhibitor under clinical trial, overcomes resistance mediated by SMAD4-deficiency or TGFß signaling. Our data point to differential mechanisms underlying the resistance to treatment in PDAC arising from TGFß signaling and SMAD4 loss, respectively. The findings will help the development of mitochondria-targeted therapy for pancreatic cancer patients with SMAD4 as a plausible predictive marker.


Asunto(s)
Neoplasias Pancreáticas/metabolismo , Proteína Smad4/metabolismo , Humanos , Mitofagia , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patología , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA