Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Anim Ecol ; 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38847240

RESUMEN

Food webs depict the tangled web of trophic interactions associated with the functioning of an ecosystem. Understanding the mechanisms providing stability to these food webs is therefore vital for conservation efforts and the management of natural systems. Here, we first characterised a tropical stream meta-food web and five individual food webs using a Bayesian Hierarchical approach unifying three sources of information (gut content analysis, literature compilation and stable isotope data). With data on population-level biomass and individually measured body mass, we applied a bioenergetic model and assessed food web stability using a Lotka-Volterra system of equations. We then assessed the resilience of the system to individual species extinctions using simulations and investigated the network patterns associated with systems with higher stability. The model resulted in a stable meta-food web with 307 links among the 61 components. At the regional scale, 70% of the total energy flow occurred through a set of 10 taxa with large variation in body masses. The remaining 30% of total energy flow relied on 48 different taxa, supporting a significant dependency on a diverse community. The meta-food web was stable against individual species extinctions, with a higher resilience in food webs harbouring omnivorous fish species able to connect multiple food web compartments via weak, non-specialised interactions. Moreover, these fish species contributed largely to the spatial variation among individual food webs, suggesting that these species could operate as mobile predators connecting different streams and stabilising variability at the regional scale. Our results outline two key mechanisms of food web stability operating in tropical streams: (i) the diversity of species and body masses buffering against random and size-dependent disturbances and (ii) high regional diversity and weak omnivorous interactions of predators buffering against local stochastic variation in species composition. These mechanisms rely on high local and regional biodiversity in tropical streams, which is known to be strongly affected by human impacts. Therefore, an urgent challenge is to understand how the ongoing systematic loss of diversity jeopardises the stability of stream food webs in human-impacted landscapes.


As teias alimentares representam um emaranhado de interações tróficas associadas ao funcionamento de um ecossistema. Compreender os mecanismos que proporcionam estabilidade a estas teias alimentares é, portanto, vital para os esforços de conservação e gestão dos sistemas naturais. Aqui, primeiro caracterizamos uma meta teia alimentar de riachos tropicais e cinco teias alimentares individuais usando uma abordagem hierárquica Bayesiana unificando três fontes de informação (análise de conteúdo estomacal, compilação de literatura, dados de isótopos estáveis). Com dados sobre biomassa em nível populacional e massa corporal medida individualmente, aplicamos um modelo bioenergético e avaliamos a estabilidade da cadeia alimentar usando um sistema de equações Lotka­Volterra. Em seguida, avaliamos a resiliência do sistema às extinções de espécies individuais usando simulações e investigamos os padrões de rede associados a sistemas com maior estabilidade. O modelo resultou em uma meta teia alimentar estável com 307 ligações entre os 61 componentes. Na escala regional, 70% do fluxo total de energia ocorreu através de um conjunto de dez taxa com grande variação nas massas corporais. Os restantes 30% do fluxo total de energia dependiam de 47 taxa diferentes, apoiando uma dependência significativa de uma comunidade diversificada. A meta teia alimentar foi estável contra extinções de espécies individuais, com uma maior resiliência em teias alimentares que abrigam espécies de peixes onívoros capazes de conectar múltiplos compartimentos da teia alimentar através de interações fracas e não especializadas. Além disso, estas espécies de peixes contribuíram amplamente para a variação espacial entre as cadeias alimentares individuais, sugerindo que estas espécies poderiam operar como predadores móveis conectando diferentes riachos e estabilizando a variabilidade à escala regional. Nossos resultados descrevem dois mecanismos principais de estabilidade da cadeia alimentar operando em riachos tropicais: (i) a diversidade de espécies e massas corporais que protegem contra distúrbios aleatórios e dependentes do tamanho (ii) alta diversidade regional e fracas interações onívoras de predadores que protegem contra a variação estocástica local na composição de espécies. Estes mecanismos dependem de uma elevada biodiversidade local e regional em riachos tropicais, que são conhecidos por serem fortemente afetados pelos impactos humanos. Portanto, um desafio urgente é compreender como a contínua perda sistemática de diversidade põe em risco a estabilidade das teias alimentares em paisagens impactadas pelo homem.

2.
Ecol Lett ; 26(12): 2122-2134, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37807844

RESUMEN

The influence of aquatic resource-inputs on terrestrial communities is poorly understood, particularly in the tropics. We used stable isotope analysis of carbon and nitrogen to trace aquatic prey use and quantify the impact on trophic structure in 240 riparian arthropod communities in tropical and temperate forests. Riparian predators consumed more aquatic prey and were more trophically diverse in the tropics than temperate regions, indicating tropical riparian communities are both more reliant on and impacted by aquatic resources than temperate communities. This suggests they are more vulnerable to disruption of aquatic-terrestrial linkages. Although aquatic resource use declined strongly with distance from water, we observed no correlated change in trophic structure, suggesting trophic flexibility to changing resource availability within riparian predator communities in both tropical and temperate regions. Our findings highlight the importance of aquatic resources for riparian communities, especially in the tropics, but suggest distance from water is less important than resource diversity in maintaining terrestrial trophic structure.


Asunto(s)
Artrópodos , Cadena Alimentaria , Animales , Bosques , Carbono , Agua , Ecosistema
3.
Glob Chang Biol ; 29(11): 3054-3071, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36946870

RESUMEN

Climate change-related heatwaves are major threats to biodiversity and ecosystem functioning. However, our current understanding of the mechanisms governing community resistance to and recovery from extreme temperature events is still rudimentary. The spatial insurance hypothesis postulates that diverse regional species pools can buffer ecosystem functioning against local disturbances through the immigration of better-adapted taxa. Yet, experimental evidence for such predictions from multi-trophic communities and pulse-type disturbances, like heatwaves, is largely missing. We performed an experimental mesocosm study to test whether species dispersal from natural lakes prior to a simulated heatwave could increase the resistance and recovery of plankton communities. As the buffering effect of dispersal may differ among trophic groups, we independently manipulated the dispersal of organisms from lower (phytoplankton) and higher (zooplankton) trophic levels. The experimental heatwave suppressed total community biomass by having a strong negative effect on zooplankton biomass, probably due to a heat-induced increase in metabolic costs, resulting in weaker top-down control on phytoplankton. While zooplankton dispersal did not alleviate the negative heatwave effects on zooplankton biomass, phytoplankton dispersal enhanced biomass recovery at the level of primary producers, providing partial evidence for spatial insurance. The differential responses to dispersal may be linked to the much larger regional species pool of phytoplankton than of zooplankton. Our results suggest high recovery capacity of community biomass independent of dispersal. However, community composition and trophic structure remained altered due to the heatwave, implying longer-lasting changes in ecosystem functioning.


Asunto(s)
Ecosistema , Plancton , Animales , Zooplancton/fisiología , Biodiversidad , Biomasa , Fitoplancton/fisiología , Cadena Alimentaria
4.
J Anim Ecol ; 92(6): 1176-1189, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36994670

RESUMEN

Human land-use change is a major threat to natural ecosystems worldwide. Nonetheless, the effects of human land-uses on the structure of plant and animal assemblages and their functional characteristics need to be better understood. Furthermore, the pathways by which human land uses affect ecosystem functions, such as biomass production, still need to be clarified. We compiled a unique dataset of fish, arthropod and macrophyte assemblages from 61 stream ecosystems in two Neotropical biomes: Amazonian rainforest and Uruguayan grasslands. We then tested how the cover of agriculture, pasture, urbanization and afforestation affected the taxonomic richness and functional diversity of those three species assemblages, and the consequences of these effects for animal biomass production. Single trait categories and functional diversity were evaluated, combining recruitment and life-history, resource and habitat-use, and body size. The effects of intensive human land-uses on taxonomic and functional diversities were as strong as other drivers known to affect biodiversity, such as local climate and environmental factors. In both biomes, the taxonomic richness and functional diversity of animal and macrophyte assemblages decreased with increasing cover of agriculture, pasture, and urbanization. Human land-uses were associated with functional homogenization of both animal and macrophyte assemblages. Human land-uses reduced animal biomass through direct and indirect pathways mediated by declines in taxonomic and functional diversities. Our findings indicate that converting natural ecosystems to supply human demands results in species loss and trait homogenization across multiple biotic assemblages, ultimately reducing animal biomass production in streams.


Asunto(s)
Artrópodos , Ecosistema , Humanos , Animales , Biomasa , Ríos/química , Biodiversidad
5.
Ecotoxicol Environ Saf ; 255: 114834, 2023 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-36989946

RESUMEN

Microplastics are now ubiquitous in freshwater environments. As most previous research has focused on species-specific effects of microplastics under controlled laboratory conditions, little is known about the impact of microplastics at higher levels of ecological organisation, such as freshwater communities and their associated ecosystem functions. To fill this knowledge gap, an outdoor experiment using 40 freshwater mesocosms, each 1.57 m3, was used to determine the effects of (i) microplastic type: traditional oil-based high-density polyethylene versus bio-based biodegradable polylactic acid, (ii) concentration of microplastic particles and (iii) nutrient enrichment. The two concentrations of microplastics used were equivalent to measured environmentally occurring concentrations and concentrations known to cause toxicological effects under laboratory conditions. Freshwater communities are also at increasing risk from nutrient enrichment, which can alter community composition in favour of competitively dominant taxa. The independent and interactive effects of these treatments on pelagic community structure (phytoplankton standing stock, taxonomic richness, and composition) and ecosystem functioning (periphyton productivity and leaf litter decomposition) were assessed. Taxonomic richness and community composition were not affected by exposure to the experimental treatments and there were no significant treatment effects on phytoplankton standing stock, periphyton productivity, total or microbial leaf litter decomposition. Overall, multiple microplastic exposures, crossed with nutrient addition had little impact on the structure and functioning of semi-natural freshwater ecosystems. These findings indicate that the negative impacts of microplastics predicted from species-specific studies may not be readily realised at the ecosystem scale.


Asunto(s)
Ecosistema , Contaminantes Químicos del Agua , Microplásticos , Plásticos/toxicidad , Agua Dulce/química , Fitoplancton , Contaminantes Químicos del Agua/toxicidad , Contaminantes Químicos del Agua/análisis
6.
Glob Chang Biol ; 28(11): 3694-3710, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35243726

RESUMEN

Current climate change is disrupting biotic interactions and eroding biodiversity worldwide. However, species sensitive to aridity, high temperatures, and climate variability might find shelter in microclimatic refuges, such as leaf rolls built by arthropods. To explore how the importance of leaf shelters for terrestrial arthropods changes with latitude, elevation, and climate, we conducted a distributed experiment comparing arthropods in leaf rolls versus control leaves across 52 sites along an 11,790 km latitudinal gradient. We then probed the impact of short- versus long-term climatic impacts on roll use, by comparing the relative impact of conditions during the experiment versus average, baseline conditions at the site. Leaf shelters supported larger organisms and higher arthropod biomass and species diversity than non-rolled control leaves. However, the magnitude of the leaf rolls' effect differed between long- and short-term climate conditions, metrics (species richness, biomass, and body size), and trophic groups (predators vs. herbivores). The effect of leaf rolls on predator richness was influenced only by baseline climate, increasing in magnitude in regions experiencing increased long-term aridity, regardless of latitude, elevation, and weather during the experiment. This suggests that shelter use by predators may be innate, and thus, driven by natural selection. In contrast, the effect of leaf rolls on predator biomass and predator body size decreased with increasing temperature, and increased with increasing precipitation, respectively, during the experiment. The magnitude of shelter usage by herbivores increased with the abundance of predators and decreased with increasing temperature during the experiment. Taken together, these results highlight that leaf roll use may have both proximal and ultimate causes. Projected increases in climate variability and aridity are, therefore, likely to increase the importance of biotic refugia in mitigating the effects of climate change on species persistence.


Asunto(s)
Artrópodos , Animales , Biodiversidad , Cambio Climático , Ecosistema , Hojas de la Planta
7.
Ecol Appl ; 32(2): e2492, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34773666

RESUMEN

Aquatic habitats are severely threatened by human activities. For anadromous species, managing freshwater habitats to maximize production of more, larger juveniles could improve resilience to threats in marine habitats and enhance population viability. In some juvenile salmonid habitats, complexity created by large substrates provides resources and reduces competitive interactions, thereby promoting juvenile production. In lowland rivers, which lack large substrates, aquatic plants might provide similar complexity and enhance fish productivity. To test the influence of aquatic plants on juvenile Atlantic salmon and sympatric brown trout in a lowland river, we directly manipulated the cover of the dominant macrophyte, Ranunculus, in nine sites during summer and autumn for two years. We quantified the abundance, site retention and growth of salmon and trout under high, medium or low Ranunculus cover. To investigate the effects of Ranunculus cover on feeding opportunities and interspecific competition, we quantified available prey biomass and body size, fish diet composition and compared dietary niche overlap. Experimentally increased Ranunculus cover supported higher salmon abundance in summer and autumn, and higher site retention and growth of salmon in summer. Trout abundance and growth were not influenced by Ranunculus cover, but trout site retention doubled in high, relative to low, cover sites. Despite the weak effects of Ranunculus cover on prey availability, salmon and trout inhabiting high cover sites consumed larger prey and a higher biomass of prey. Furthermore, dietary niche overlap was lower in high, relative to low, cover sites, suggesting that abundant Ranunculus reduced interspecific competition. This field experiment shows that high Ranunculus cover can support more and better growing juvenile salmon, and facilitate foraging and co-existence of sympatric salmonid species. Maintaining or enhancing natural macrophyte cover can be achieved through sympathetic in-river and riparian vegetation management and mitigating pressures on them, such as sediment inputs and low flows, or through planting. Further research should test whether macrophyte cover benefits propagate to subsequent life stages, particularly juvenile overwintering associated with high mortality. This knowledge, in combination with our findings, would further clarify whether beneficial juvenile habitat can improve the viability of at-risk salmonid populations. Overall, our findings suggest that the aims of river restoration might be achieved through promotion of in-stream aquatic vegetation.


Asunto(s)
Salmo salar , Animales , Agua Dulce , Ríos , Estaciones del Año , Trucha
8.
J Anim Ecol ; 91(3): 551-565, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34954827

RESUMEN

Under increasing nutrient loading, shallow lakes may shift from a state of clear water dominated by submerged macrophytes to a turbid state dominated by phytoplankton or a shaded state dominated by floating macrophytes. How such regime shifts mediate the relationship between taxonomic and functional diversities (FD) and lake multifunctionality is poorly understood. We employed a detailed database describing a shallow lake over a 12-year period during which the lake has displayed all the three states (clear, turbid and shaded) to investigate how species richness, FD of fish and zooplankton, ecosystem multifunctionality and five individual ecosystem functions (nitrogen and phosphorus concentrations, standing fish biomass, algae production and light availability) differ among states. We also evaluated how the relationship between biodiversity (species richness and FD) and multifunctionality is affected by regime shifts. We showed that species richness and the FD of fish and zooplankton were highest during the clear state. The clear state also maintained the highest values of multifunctionality as well as standing fish biomass production, algae biomass and light availability, whereas the turbid and shaded states had higher nutrient concentrations. Functional diversity was the best predictor of multifunctionality. The relationship between FD and multifunctionality was strongly positive during the clear state, but such relationship became flatter after the shift to the turbid or shaded state. Our findings illustrate that focusing on functional traits may provide a more mechanistic understanding of how regime shifts affect biodiversity and the consequences for ecosystem functioning. Regime shifts towards a turbid or shaded state negatively affect the taxonomic diversity and FD of fish and zooplankton, which in turn impairs the multifunctionality of shallow lakes.


Asunto(s)
Ecosistema , Lagos , Animales , Biomasa , Peces , Fitoplancton
9.
J Anim Ecol ; 90(7): 1623-1634, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33955003

RESUMEN

Aquatic ecosystems are tightly linked to terrestrial ecosystems by exchanges of resources, which influence species interactions, community dynamics and functioning in both ecosystem types. However, our understanding of how this coupling responds to climate warming is restricted to temperate, boreal and arctic regions, with limited knowledge from tropical ecosystems. We investigated how warming aquatic ecosystems impact cross-ecosystem exchanges in the tropics, through the export of aquatic resources into the terrestrial environment and the breakdown of terrestrial resources within the aquatic environment. We experimentally heated 50 naturally assembled aquatic communities, contained within different-sized tank-bromeliads, to a 23.5-32°C gradient of mean water temperatures. The biomass, abundance and richness of aquatic insects emerging into the terrestrial environment all declined with rising temperatures over a 45-day experiment. Structural equation and linear mixed effects modelling suggested that these impacts were driven by deleterious effects of warming on insect development and survival, rather than being mediated by aquatic predation, nutrient availability or reduced body size. Decomposition was primarily driven by microbial activity. However, total decomposition by both microbes and macroinvertebrates increased with temperature in all but the largest ecosystems, where it decreased. Thus, warming decoupled aquatic and terrestrial ecosystems, by reducing the flux of aquatic resources to terrestrial ecosystems but variably enhancing or reducing terrestrial resource breakdown in aquatic ecosystems. In contrast with increased emergence observed in warmed temperate ecosystems, future climate change is likely to reduce connectivity between tropical terrestrial and aquatic habitats, potentially impacting consumers in both ecosystem types. As tropical ectotherms live closer to their thermal tolerance limits compared to temperate species, warming can disrupt cross-ecosystem dynamics in an interconnected tropical landscape and should be considered when investigating ecosystem-level consequences of climate change.


Os ecossistemas aquáticos estão intimamente ligados aos ecossistemas terrestres por meio das trocas de recursos, que influenciam as interações entre as espécies, a dinâmica da comunidade e o funcionamento de ambos os tipos de ecossistemas. No entanto, nosso entendimento de como esse acoplamento responde ao aquecimento do clima é restrito às regiões temperadas, boreais e árticas, com conhecimento limitado para os ecossistemas tropicais. Investigamos como o aquecimento dos ecossistemas aquáticos impacta as trocas entre os ecossistemas nos trópicos, por meio da exportação de recursos aquáticos para o ambiente terrestre e da decomposição dos detritos de origem terrestre no ambiente aquático. Nós aquecemos experimentalmente 50 comunidades aquáticas que habitam tanques de bromélias de diferentes tamanhos, submetidas a um gradiente de temperatura média da água variando de 23,5 a 32°C. Em um experimento de 45 dias, a biomassa, abundância e riqueza de insetos aquáticos emergindo para o ambiente terrestre diminuíram com o aumento da temperatura. Modelos lineares mistos e de equações estruturais sugerem que esses impactos foram causados por efeitos deletérios do aquecimento no desenvolvimento e sobrevivência dos insetos, ao invés de serem mediados por predadores aquáticos, disponibilidade de nutrientes ou tamanho corporal reduzido. A decomposição foi determinada principalmente pela atividade microbiana. A decomposição total por micro-organismos e macro invertebrados aumentou com a temperatura, exceto em ecossistemas maiores. Assim, o aquecimento dissociou os ecossistemas aquáticos e terrestres, reduzindo o fluxo de recursos aquáticos para os ecossistemas terrestres, mas aumentando ou reduzindo de forma variável a decomposição dos recursos terrestres nos ecossistemas aquáticos. Em contraste com o aumento da emergência observada em ecossistemas temperados aquecidos, as mudanças climáticas futuras provavelmente reduzirão a conectividade entre os habitats terrestres e aquáticos tropicais, impactando potencialmente os consumidores em ambos os tipos de ecossistemas. Como organismos ectotérmicos tropicais vivem mais perto dos seus limites de tolerância térmica em comparação com espécies temperadas, o aquecimento pode comprometer a dinâmica entre os ecossistemas em uma paisagem tropical interconectada e deve ser considerado ao investigar as consequências das mudanças climáticas no nível do ecossistema.


Asunto(s)
Cambio Climático , Ecosistema , Animales , Regiones Árticas , Insectos , Conducta Predatoria
10.
Biol Lett ; 17(6): 20210137, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-34102072

RESUMEN

Insect abundance and diversity are declining worldwide. Although recent research found freshwater insect populations to be increasing in some regions, there is a critical lack of data from tropical and subtropical regions. Here, we examine a 20-year monitoring dataset of freshwater insects from a subtropical floodplain comprising a diverse suite of rivers, shallow lakes, channels and backwaters. We found a pervasive decline in abundance of all major insect orders (Odonata, Ephemeroptera, Trichoptera, Megaloptera, Coleoptera, Hemiptera and Diptera) and families, regardless of their functional role or body size. Similarly, Chironomidae species richness decreased over the same time period. The main drivers of this pervasive insect decline were increased concurrent invasions of non-native insectivorous fish, water transparency and changes to water stoichiometry (i.e. N : P ratios) over time. All these drivers represent human impacts caused by reservoir construction. This work sheds light on the importance of long-term studies for a deeper understanding of human-induced impacts on aquatic insects. We highlight that extended anthropogenic impact monitoring and mitigation actions are pivotal in maintaining freshwater ecosystem integrity.


Asunto(s)
Ecosistema , Agua , Animales , Biodiversidad , Agua Dulce , Humanos , Insectos , Ríos
11.
Oecologia ; 192(2): 515-527, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31950262

RESUMEN

Biodiversity loss and climate warming are occurring in concert, with potentially profound impacts on ecosystem functioning. We currently know very little about the combined effects of these changes on the links between the community structure, dynamics and the resulting in situ CO2 concentrations in freshwater ecosystems. Here we aimed to determine both individual and combined effects of temperature and non-resource diversity (species inedible for a given consumer) on CO2 concentration. Our analysis further aimed to establish both direct effects on CO2 concentrations and potential indirect effects that occur via changes to the phytoplankton and zooplankton biomasses. Our results showed that there were no interactive effects of changes in temperature and diversity on CO2 concentration in the water. Instead, independent increases in either temperature or non-resource diversity resulted in a substantial reduction in CO2 concentrations, particularly at the highest non-resource diversity. The effects of non-resource diversity and warming on CO2 were indirect, resulting largely from the positive impacts on total biomass of primary producers. Our study is the first to experimentally partition the impacts of temperature and diversity on the consumer-resource dynamics and associated changes to CO2 concentrations. It provides new mechanistic insights into the role of diverse plankton communities for ecosystem functioning and their importance in regulating CO2 dynamics under ongoing climate warming.


Asunto(s)
Dióxido de Carbono , Ecosistema , Animales , Biodiversidad , Biomasa , Agua Dulce , Temperatura , Zooplancton
12.
J Anim Ecol ; 88(5): 677-689, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30712255

RESUMEN

The changes to physical and chemical ecosystem characteristics as a response to pervasive and intensifying land use have the potential to alter the consumer-resource interactions and to rewire the flow of energy through entire food webs. We investigated these structural and functional properties of food webs in stream ecosystems distributed across woodland, agricultural and urban areas in the Zagreb region of Croatia. We compared resource availability and consumer diet composition using stable isotope mixing models and tested how the isotopic variance of basal resources, primary consumers, macroinvertebrate predators and other food web characteristics change with different land-use types. Combination of increased loading and altered composition of nutrients, lower water discharge and higher light availability at urban sites likely promoted the contribution of aquatic macrophytes to diets of primary consumers. Macroinvertebrate predators shifted their diet, relying more on active filterers at urban sites relative to woodland and agricultural sites. Urban food webs also had lower trophic redundancy (i.e. fewer species at each trophic level) and a more homogenized energy flow from lower to higher trophic levels. There was no effect of land use on isotopic variation of basal resources, primary consumers or macroinvertebrate predators, but all these trophic groups at urban and agricultural sites were 15 N-enriched relative to their counterparts in woodland stream food webs. The physical and chemical ecosystem characteristics associated with intensive land use altered the resource availability, trophic redundancy and the flow of energy to other trophic levels, with potentially negative consequences for community dynamics and ecosystem functioning. These empirical findings indicate that reducing nutrient pollution, agricultural runoffs and maintaining riparian vegetation can mitigate the impacts of land use on structure and function of stream ecosystems.


Asunto(s)
Cadena Alimentaria , Ríos , Agricultura , Animales , Ecosistema , Bosques
13.
Ecology ; 99(11): 2467-2475, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30289979

RESUMEN

Consensus has emerged in the literature that increased biodiversity enhances the capacity of ecosystems to perform multiple functions. However, most biodiversity/ecosystem function studies focus on a single ecosystem, or on landscapes of homogenous ecosystems. Here, we investigate how increased landscape-level environmental dissimilarity may affect the relationship between different metrics of diversity (α, ß, or γ) and ecosystem function. We produced a suite of simulated landscapes, each of which contained four experimental outdoor aquatic mesocosms. Differences in temperature and nutrient conditions of the mesocosms allowed us to simulate landscapes containing a range of within-landscape environmental heterogeneities. We found that the variation in ecosystem functions was primarily controlled by environmental conditions, with diversity metrics accounting for a smaller (but significant) amount of variation in function. When landscapes were more homogeneous, α, ß, and γ diversity was not associated with differences in primary production, and only γ was associated with changes in decomposition. In these homogeneous landscapes, differences in these two ecosystem functions were most strongly related to nutrient and temperature conditions in the ecosystems. However, as landscape-level environmental dissimilarity increased, the relationship between α, ß, or γ and ecosystem functions strengthened, with ß being a greater predictor of variation in decomposition at the highest levels of environmental dissimilarity than α or γ. We propose that when all ecosystems in a landscape have similar environmental conditions, species sorting is likely to generate a single community composition that is well suited to those environmental conditions, ß is low, and the efficiency of diversity-ecosystem function couplings is similar across communities. Under this low ß, the effect of abiotic conditions on ecosystem function will be most apparent. However, when environmental conditions vary among ecosystems, species sorting pressures are different among ecosystems, producing different communities among locations in a landscape. These conditions lead to stronger relationships between ß and the magnitude of ecosystem functions. Our results illustrate that abiotic conditions and the homogeneity of communities influence ecosystem function expressed at the landscape scale.


Asunto(s)
Biodiversidad , Ecosistema
14.
Am Nat ; 185(3): 354-66, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25674690

RESUMEN

Trophic cascades are indirect positive effects of predators on resources via control of intermediate consumers. Larger-bodied predators appear to induce stronger trophic cascades (a greater rebound of resource density toward carrying capacity), but how this happens is unknown because we lack a clear depiction of how the strength of trophic cascades is determined. Using consumer resource models, we first show that the strength of a trophic cascade has an upper limit set by the interaction strength between the basal trophic group and its consumer and that this limit is approached as the interaction strength between the consumer and its predator increases. We then express the strength of a trophic cascade explicitly in terms of predator body size and use two independent parameter sets to calculate how the strength of a trophic cascade depends on predator size. Both parameter sets predict a positive effect of predator size on the strength of a trophic cascade, driven mostly by the body size dependence of the interaction strength between the first two trophic levels. Our results support previous empirical findings and suggest that the loss of larger predators will have greater consequences on trophic control and biomass structure in food webs than the loss of smaller predators.


Asunto(s)
Tamaño Corporal , Cadena Alimentaria , Animales , Conservación de los Recursos Naturales , Eucariontes , Modelos Teóricos , Conducta Predatoria/fisiología
15.
Ecology ; 96(2): 428-39, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26240864

RESUMEN

Local habitat size has been shown to influence colonization and extinction processes of species in patchy environments. However, species differ in body size, mobility, and trophic level, and may not respond in the same way to habitat size. Thus far, we have a limited understanding of how habitat size influences the structure of multitrophic communities and to what extent the effects may be generalizable over a broad geographic range. Here, we used water-filled bromeliads of different sizes as a natural model system to examine the effects of habitat size on the trophic structure of their inhabiting invertebrate communities. We collected composition and biomass data from 651 bromeliad communities from eight sites across Central and South America differing in environmental conditions, species pools, and the presence of large-bodied odonate predators. We found that trophic structure in the communities changed dramatically with changes in habitat (bromeliad) size. Detritivore : resource ratios showed a consistent negative relationship with habitat size across sites. In contrast, changes in predator: detritivore (prey) ratios depended on the presence of odonates as dominant predators in the regional pool. At sites without odonates, predator: detritivore biomass ratios decreased with increasing habitat size. At sites with odonates, we found odonates to be more frequently present in large than in small bromeliads, and predator: detritivore biomass ratios increased with increasing habitat size to the point where some trophic pyramids became inverted. Our results show that the distribution of biomass amongst food-web levels depends strongly on habitat size, largely irrespective of geographic differences in environmental conditions or detritivore species compositions. However, the presence of large-bodied predators in the regional species pool may fundamentally alter this relationship between habitat size and trophic structure. We conclude that taking into account the response and multitrophic effects of dominant, mobile species may be critical when predicting changes in community structure along a habitat-size gradient.


Asunto(s)
Bromeliaceae , Cadena Alimentaria , Invertebrados/fisiología , Conducta Predatoria/fisiología , Animales , Brasil , Costa Rica , Dominica , Puerto Rico
16.
Oecologia ; 178(2): 549-56, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25656586

RESUMEN

The strength of interspecific interactions is often proposed to affect food web stability, with weaker interactions increasing the persistence of species, and food webs as a whole. However, the mechanisms that modify interaction strengths, and their effects on food web persistence are not fully understood. Using food webs containing different combinations of predator, prey, and nonprey species, we investigated how predation risk of susceptible prey is affected by the presence of species not directly trophically linked to either predators or prey. We predicted that indirect alterations to the strength of trophic interactions translate to changes in persistence time of extinction-prone species. We assembled interaction webs of protist consumers and turbellarian predators with eight different combinations of prey, predators and nonprey species, and recorded abundances for over 130 prey generations. Persistence of predation-susceptible species was increased by the presence of nonprey. Furthermore, multiple nonprey species acted synergistically to increase prey persistence, such that persistence was greater than would be predicted from the dynamics of simpler food webs. We also found evidence suggesting increased food web complexity may weaken interspecific competition, increasing persistence of poorer competitors. Our results demonstrate that persistence times in complex food webs cannot be predicted from the dynamics of simplified systems, and that species not directly involved in consumptive interactions likely play key roles in maintaining persistence. Global species diversity is currently declining at an unprecedented rate and our findings reveal that concurrent loss of species that modify trophic interactions may have unpredictable consequences for food web stability.


Asunto(s)
Biodiversidad , Extinción Biológica , Cadena Alimentaria , Dinámica Poblacional , Conducta Predatoria , Animales , Ecología , Turbelarios
17.
Ecol Lett ; 17(8): 902-14, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24894409

RESUMEN

Changing temperature can substantially shift ecological communities by altering the strength and stability of trophic interactions. Because many ecological rates are constrained by temperature, new approaches are required to understand how simultaneous changes in multiple rates alter the relative performance of species and their trophic interactions. We develop an energetic approach to identify the relationship between biomass fluxes and standing biomass across trophic levels. Our approach links ecological rates and trophic dynamics to measure temperature-dependent changes to the strength of trophic interactions and determine how these changes alter food web stability. It accomplishes this by using biomass as a common energetic currency and isolating three temperature-dependent processes that are common to all consumer-resource interactions: biomass accumulation of the resource, resource consumption and consumer mortality. Using this framework, we clarify when and how temperature alters consumer to resource biomass ratios, equilibrium resilience, consumer variability, extinction risk and transient vs. equilibrium dynamics. Finally, we characterise key asymmetries in species responses to temperature that produce these distinct dynamic behaviours and identify when they are likely to emerge. Overall, our framework provides a mechanistic and more unified understanding of the temperature dependence of trophic dynamics in terms of ecological rates, biomass ratios and stability.


Asunto(s)
Metabolismo Energético/fisiología , Cadena Alimentaria , Modelos Biológicos , Temperatura , Animales , Biomasa
18.
Proc Biol Sci ; 281(1788): 20140633, 2014 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-24966312

RESUMEN

Although competing species are expected to exhibit compensatory dynamics (negative temporal covariation), empirical work has demonstrated that competitive communities often exhibit synchronous dynamics (positive temporal covariation). This has led to the suggestion that environmental forcing dominates species dynamics; however, synchronous and compensatory dynamics may appear at different length scales and/or at different times, making it challenging to identify their relative importance. We compiled 58 long-term datasets of zooplankton abundance in north-temperate and sub-tropical lakes and used wavelet analysis to quantify general patterns in the times and scales at which synchronous/compensatory dynamics dominated zooplankton communities in different regions and across the entire dataset. Synchronous dynamics were far more prevalent at all scales and times and were ubiquitous at the annual scale. Although we found compensatory dynamics in approximately 14% of all combinations of time period/scale/lake, there were no consistent scales or time periods during which compensatory dynamics were apparent across different regions. Our results suggest that the processes driving compensatory dynamics may be local in their extent, while those generating synchronous dynamics operate at much larger scales. This highlights an important gap in our understanding of the interaction between environmental and biotic forces that structure communities.


Asunto(s)
Biota , Crustáceos/fisiología , Lagos , Zooplancton/fisiología , Animales , Europa (Continente) , Modelos Biológicos , América del Norte , Dinámica Poblacional , Estaciones del Año , Factores de Tiempo , Análisis de Ondículas
19.
Oecologia ; 176(4): 903-15, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25227679

RESUMEN

The effects of habitat connectivity on food webs have been studied both empirically and theoretically, yet the question of whether empirical results support theoretical predictions for any food web metric other than species richness has received little attention. Our synthesis brings together theory and empirical evidence for how habitat connectivity affects both food web stability and complexity. Food web stability is often predicted to be greatest at intermediate levels of connectivity, representing a compromise between the stabilizing effects of dispersal via rescue effects and prey switching, and the destabilizing effects of dispersal via regional synchronization of population dynamics. Empirical studies of food web stability generally support both this pattern and underlying mechanisms. Food chain length has been predicted to have both increasing and unimodal relationships with connectivity as a result of predators being constrained by the patch occupancy of their prey. Although both patterns have been documented empirically, the underlying mechanisms may differ from those predicted by models. In terms of other measures of food web complexity, habitat connectivity has been empirically found to generally increase link density but either reduce or have no effect on connectance, whereas a unimodal relationship is expected. In general, there is growing concordance between empirical patterns and theoretical predictions for some effects of habitat connectivity on food webs, but many predictions remain to be tested over a full connectivity gradient, and empirical metrics of complexity are rarely modeled. Closing these gaps will allow a deeper understanding of how natural and anthropogenic changes in connectivity can affect real food webs.


Asunto(s)
Ecosistema , Cadena Alimentaria , Dinámica Poblacional , Conducta Predatoria , Animales , Ecología , Modelos Biológicos
20.
Environ Pollut ; 359: 124540, 2024 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-39004208

RESUMEN

Microplastic pollution poses a global threat to freshwater ecosystems, with laboratory experiments indicating potential toxic impacts through chemical toxicity, physical abrasion, and false satiation. Bioplastics have emerged as a potential greener alternative to traditional oil-based plastics. Yet, their environmental effects remain unclear, particularly at scales relevant to the natural environment. Additionally, the interactive impacts of microplastics with other environmental stressors, such as nutrient enrichment, are poorly understood and rarely studied. Under natural conditions organisms might be able to mitigate the toxic effects of microplastics by shifting their diet, but this ability may be compromised by other stressors. This study combines an outdoor mesocosm experiment and stable isotope analysis to determine changes in the trophic niches of three freshwater invertebrate species exposed to conventional (HDPE) and bio-based biodegradable (PLA) microplastics at two concentrations, both independently and combined with nutrient enrichment. Exposure to microplastics altered the isotopic niches of two of the invertebrate species, with nutrient enrichment mediating this effect. Moreover, the effects of microplastics were consistent regardless of their type or concentration. Under enriched conditions, two of the species exposed to microplastics shifted to a specialised diet compared with controls, whereas little difference was observed between the isotopic niches of those exposed to microplastic and controls under ambient nutrient conditions. Additionally, PLA was estimated to support 24 % of the diet of one species, highlighting the potential assimilation of bioplastics by biota and possible implications. Overall, these findings suggest that the toxic effects of microplastics suggested from laboratory studies might not manifest under real-world conditions. However, this study does demonstrate that subtle sublethal effects occur even at environmentally realistic microplastic concentrations. The crucial role of nutrient enrichment in mediating microplastic effects underscores the importance of considering microplastic pollution in the context of other environmental stressors.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA