Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Appl Environ Microbiol ; 84(1)2018 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-29030444

RESUMEN

The genus Limnohabitans (Comamonadaceae, Betaproteobacteria) is a common and a highly active component of freshwater bacterioplanktonic communities. To date, the genus has been considered to contain only heterotrophic species. In this study, we detected the photosynthesis genes pufLM and bchY in 28 of 46 strains from three Limnohabitans lineages. The pufM sequences obtained are very closely related to environmental pufM sequences detected in various freshwater habitats, indicating the ubiquity and potential importance of photoheterotrophic Limnohabitans in nature. Additionally, we sequenced and analyzed the genomes of 5 potentially photoheterotrophic Limnohabitans strains, to gain further insights into their phototrophic capacity. The structure of the photosynthesis gene cluster turned out to be highly conserved within the genus Limnohabitans and also among all potentially photosynthetic Betaproteobacteria strains. The expression of photosynthetic complexes was detected in a culture of Limnohabitans planktonicus II-D5T using spectroscopic and pigment analyses. This was further verified by a novel combination of infrared microscopy and fluorescent in situ hybridization.IMPORTANCE The data presented document that the capacity to perform anoxygenic photosynthesis is common among the members of the genus Limnohabitans, indicating that they may have a novel role in freshwater habitats.


Asunto(s)
Proteínas Bacterianas/genética , Comamonadaceae/genética , Genes Bacterianos/fisiología , Familia de Multigenes/fisiología , Fotosíntesis/genética , Aerobiosis , Proteínas Bacterianas/metabolismo , Comamonadaceae/metabolismo , Filogenia
2.
J Med Genet ; 53(11): 768-775, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27412952

RESUMEN

BACKGROUND: Mutations in the RMND1 (Required for Meiotic Nuclear Division protein 1) gene have recently been linked to infantile onset mitochondrial disease characterised by multiple mitochondrial respiratory chain defects. METHODS: We summarised the clinical, biochemical and molecular genetic investigation of an international cohort of affected individuals with RMND1 mutations. In addition, we reviewed all the previously published cases to determine the genotype-phenotype correlates and performed survival analysis to identify prognostic factors. RESULTS: We identified 14 new cases from 11 pedigrees that harbour recessive RMND1 mutations, including 6 novel variants: c.533C>A, p.(Thr178Lys); c.565C>T, p.(Gln189*); c.631G>A, p.(Val211Met); c.1303C>T, p.(Leu435Phe); c.830+1G>A and c.1317+1G>T. Together with all previously published cases (n=32), we show that congenital sensorineural deafness, hypotonia, developmental delay and lactic acidaemia are common clinical manifestations with disease onset under 2 years. Renal involvement is more prevalent than seizures (66% vs 44%). In addition, median survival time was longer in patients with renal involvement compared with those without renal disease (6 years vs 8 months, p=0.009). The neurological phenotype also appears milder in patients with renal involvement. CONCLUSIONS: The clinical phenotypes and prognosis associated with RMND1 mutations are more heterogeneous than that were initially described. Regular monitoring of kidney function is imperative in the clinical practice in light of nephropathy being present in over 60% of cases. Furthermore, renal replacement therapy should be considered particularly in those patients with mild neurological manifestation as shown in our study that four recipients of kidney transplant demonstrate good clinical outcome to date.

3.
Mol Genet Metab ; 108(1): 102-5, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23206802

RESUMEN

We report the second known family with a very rare, maternally inherited missense m.8851T>C mutation in the mitochondrial MTATP6 gene. A failure to thrive, microcephaly, psychomotor retardation and hypotonia were present in a 3-year-old girl with a high mtDNA mutation load (87-97%). Ataxia and Leigh syndrome were subsequently documented in a neurological examination and brain MRI. A muscle biopsy demonstrated decreased ATP synthase and an accumulation of succinate dehydrogenase products, indicating mitochondrial myopathy. Her 36-year-old mother (68% blood heteroplasmy) developed peripheral neuropathy and muscle weakness at the age of 22 years. Our findings extend the clinical and laboratory phenotype associated with the m.8851T>C mutation.


Asunto(s)
Mitocondrias/metabolismo , ATPasas de Translocación de Protón Mitocondriales/genética , Músculos/patología , Mutación , Animales , Biopsia , Preescolar , Perros , Femenino , Humanos
4.
Biochim Biophys Acta ; 1807(1): 144-9, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-20937241

RESUMEN

TMEM70 protein represents a novel ancillary factor of mammalian ATP synthase. We have investigated import and processing of this factor in human cells using GFP- and FLAG-tagged forms of TMEM70 and specific antibodies. TMEM70 is synthesized as a 29kDa precursor protein that is processed to a 21kDa mature form. Immunocytochemical detection of TMEM70 showed mitochondrial colocalization with MitoTracker Red and ATP synthase. Western blot of subcellular fractions revealed the highest signal of TMEM70 in isolated mitochondria and mitochondrial location was confirmed by mass spectrometry analysis. Based on analysis of submitochondrial fractions, TMEM70 appears to be located in the inner mitochondrial membrane, in accordance with predicated transmembrane regions in the central part of the TMEM70 sequence. Two-dimensional electrophoretic analysis did not show direct interaction of TMEM70 with assembled ATP synthase but indicated the presence of dimeric form of TMEM70. No TMEM70 protein could be found in cells and isolated mitochondria from patients with ATP synthase deficiency due to TMEM70 c.317-2A>G mutation thus confirming that TMEM70 biosynthesis is prevented in these patients.


Asunto(s)
Proteínas de la Membrana/genética , Proteínas Mitocondriales/genética , Secuencia de Aminoácidos , Animales , Western Blotting , Bovinos , Línea Celular , Clonación Molecular , ADN Complementario/genética , Escherichia coli/enzimología , Fibroblastos/enzimología , Humanos , Riñón/enzimología , Espectrometría de Masas/métodos , Proteínas de la Membrana/química , Proteínas de la Membrana/metabolismo , Ratones , Mitocondrias/enzimología , Proteínas Mitocondriales/química , Proteínas Mitocondriales/metabolismo , ATPasas de Translocación de Protón Mitocondriales/deficiencia , Datos de Secuencia Molecular , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Partículas Submitocóndricas/enzimología
5.
Mitochondrion ; 15: 1-9, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24576557

RESUMEN

Dysfunction of TMEM70 disrupts the biogenesis of ATP synthase and represents the frequent cause of autosomal recessive encephalocardiomyopathy. We used tagged forms of TMEM70 and demonstrated that it has a hairpin structure with the N- and C-termini oriented towards the mitochondrial matrix. On BN-PAGE TMEM70 was detected in multiple forms including dimers and displayed partial overlap with assembled ATP synthase. Immunoprecipitation studies confirmed mutual interactions between TMEM70 molecules but, together with immunogold electron microscopy, not direct interaction with ATP synthase subunits. This indicates that the biological function of TMEM70 in the ATP synthase biogenesis may be mediated through interaction with other protein(s).


Asunto(s)
Proteínas de la Membrana/metabolismo , Membranas Mitocondriales/metabolismo , Proteínas Mitocondriales/metabolismo , ATPasas de Translocación de Protón Mitocondriales/metabolismo , Multimerización de Proteína , Línea Celular , Humanos , Inmunoprecipitación , Microscopía Inmunoelectrónica
6.
Eur J Hum Genet ; 22(3): 431-4, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23838601

RESUMEN

Mitochondrial disorders are caused by defects in mitochondrial or nuclear DNA. Although the existence of large deletions in mitochondrial DNA (mtDNA) is well known, deletions affecting whole genes are not commonly described in patients with mitochondrial disorders. Based on the results of whole-genome analyses, copy number variations (CNVs) occur frequently in the human genome and may overlap with many genes associated with clinical phenotypes. We report the discovery of two large heterozygous CNVs on 22q13.33 in two patients with mitochondrial disorders. The first patient harboured a novel point mutation c.667G>A (p.D223N) in the SCO2 gene in combination with a paternally inherited 87-kb deletion. As hypertrophic cardiomyopathy (HCMP) was not documented in the patient, this observation prompted us to compare his clinical features with all 44 reported SCO2 patients in the literature. Surprisingly, the review shows that HCMP was present in only about 50% of the SCO2 patients with non-neonatal onset. In the second patient, who had mitochondrial neurogastrointestinal encephalopathy (MNGIE), a maternally inherited 175-kb deletion and the paternally inherited point mutation c.261G>T (p.E87D) in the TYMP gene were identified.


Asunto(s)
Cardiomiopatía Hipertrófica Familiar/genética , Proteínas Portadoras/genética , Variaciones en el Número de Copia de ADN , Seudoobstrucción Intestinal/genética , Encefalomiopatías Mitocondriales/genética , Proteínas Mitocondriales/genética , Mutación Puntual , Timidina Fosforilasa/genética , Cardiomiopatía Hipertrófica Familiar/diagnóstico , Niño , Cromosomas Humanos Par 22/genética , Humanos , Lactante , Seudoobstrucción Intestinal/diagnóstico , Masculino , Encefalomiopatías Mitocondriales/diagnóstico , Chaperonas Moleculares , Distrofia Muscular Oculofaríngea , Oftalmoplejía/congénito
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA