RESUMEN
Pomegranate juice is a rich source of ellagitannins (ETs) believed to contribute to a wide range of pomegranate's health benefits. While a lot of experimental studies have been devoted to Alzheimer disease and hypoxic-ischemic brain injury, our knowledge of pomegranate's effects against Parkinson's disease (PD) is very limited. It is suggested that its neuroprotective effects are mediated by ETs-derived metabolites-urolithins. In this study, we examined the capability of pomegranate juice for protection against PD in a rat model of parkinsonism induced by rotenone. To evaluate its efficiency, assessment of postural instability, visualization of neurodegeneration, determination of oxidative damage to lipids and α-synuclein level, as well as markers of antioxidant defense status, inflammation, and apoptosis, were performed in the midbrain. We also check the presence of plausible active pomegranate ETs-derived metabolite, urolithin A, in the plasma and brain. Our results indicated that pomegranate juice treatment provided neuroprotection as evidenced by the postural stability improvement, enhancement of neuronal survival, its protection against oxidative damage and α-synuclein aggregation, the increase in mitochondrial aldehyde dehydrogenase activity, and maintenance of antiapoptotic Bcl-xL protein at the control level. In addition, we have provided evidence for the distribution of urolithin A to the brain.
Asunto(s)
Encéfalo/efectos de los fármacos , Cumarinas/metabolismo , Taninos Hidrolizables/metabolismo , Fármacos Neuroprotectores/farmacología , Enfermedad de Parkinson/tratamiento farmacológico , Granada (Fruta)/química , Animales , Antioxidantes/metabolismo , Frutas/química , Jugos de Frutas y Vegetales , Masculino , Enfermedad de Parkinson/metabolismo , Ratas , Ratas WistarRESUMEN
In this study, we investigated whether basal immobility time of C57BL/6J mice, which are commonly used in transgenesis, interferes with detection of depressive-like behavior in the tail suspension test (TST) after chronic restraint stress (CRS). We included in the study mice of the C57BL/6N strain, not previously compared with C57BL/6J for behavior in the TST, and contrasted both strains with NMRI mice which exhibit low basal immobility. NMRI, C57BL/6J, and C57BL/6N male mice (n = 20 per strain) were tested under basal conditions and after CRS (2 h daily for 14 d). NMRI and C57BL/6J mice were differentiated in the TST by low and high basal immobility times, respectively, while the C57BL/6N and NMRI mice showed similar levels of basal immobility. CRS extended the immobility time of NMRI mice in the TST, whereas both C57BL/6J and C57BL/6N mice were unaffected regardless of their initial phenotype. We explored whether detailed analysis of activity microstructure revealed effects of CRS in the TST, which are not apparent in the overall comparison of total immobility time. Interestingly, unlike C57BL/6J and/6N strains which showed no sensitivity to CRS, stressed NRMI mice displayed distinct activity microstructure. In contrast to behavioral differences, all stressed mice showed significant retardation in body weight gain, decreased thymus weight and increased adrenal cortex size. However, after CRS, enlargement of the adrenal medulla was observed in both C57BL/6J and C57BL/6N mice, suggesting similar sympatho-medullary activation and stress coping mechanism in these substrains.
Asunto(s)
Conducta Animal/fisiología , Depresión/fisiopatología , Interacción Gen-Ambiente , Genotipo , Suspensión Trasera , Pérdida de Tono Postural/fisiología , Estrés Psicológico/psicología , Adaptación Psicológica , Animales , Depresión/genética , Depresión/psicología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones EndogámicosRESUMEN
BACKGROUND: Recent studies indicated the involvement of some chemokines in the development of diabetic neuropathy; however, participation of the chemokine-C-motif ligand (XCL) subfamily remains unknown. The goal of this study was to examine how microglial inhibition by minocycline hydrochloride (MC) influences chemokine-C-motif ligand 1 (XCL1)-chemokine-C-motif receptor 1 (XCR1)/G protein-coupled receptor 5 expression and the development of allodynia/hyperalgesia in streptozotocin-induced diabetic neuropathy. METHODS: The studies were performed on streptozotocin (200 mg/kg, intraperitoneally)-induced mouse diabetic neuropathic pain model and primary glial cell cultures. The MC (30 mg/kg, intraperitoneally) was injected two times daily until day 21. XCL1 and its neutralizing antibody were injected intrathecally, and behavior was evaluated with von Frey and cold plate tests. Quantitative analysis of protein expression of glial markers, XCL1, and/or XCR1 was performed by Western blot and visualized by immunofluorescence. RESULTS: MC treatment diminished allodynia (0.9 ± 0.1 g; n = 7 vs. 3.8 ± 0.7 g; n = 7) and hyperalgesia (6.5 ± 0.6 s; n = 7 vs. 16.5 ± 1 s; n = 7) in the streptozotocin-induced diabetes. Repeated MC administration prevented microglial activation and inhibited the up-regulation of the XCL1/XCR1 levels. XCL1 administration (10 to 500 ng/5 µl; n = 9) in naive mice enhanced nociceptive transmission, and injections of neutralizing XCL1 (4 to 8 µg/5 µl; n = 10) antibody into the mice with diabetic neuropathic pain diminished allodynia/hyperalgesia. Microglia activation evoked in primary microglial cell cultures resulted in enhanced XCL1 release and XCR1 expression. Additionally, double immunofluorescence indicated the widespread coexpression of XCR1-expressing cells with spinal neurons. CONCLUSIONS: In diabetic neuropathy, declining levels of XCL1 evoked by microglia inhibition result in the cause of analgesia. The putative mechanism corroborating this finding can be related to lower spinal expression of XCR1 together with the lack of stimulation of these XCR1 receptors, which are localized on neurons.
Asunto(s)
Quimiocinas C/metabolismo , Neuropatías Diabéticas/fisiopatología , Hiperalgesia/prevención & control , Microglía , Dolor/prevención & control , Receptores de Quimiocina/metabolismo , Animales , Western Blotting , Quimiocinas C/genética , Neuropatías Diabéticas/metabolismo , Modelos Animales de Enfermedad , Técnica del Anticuerpo Fluorescente , Expresión Génica/genética , Hiperalgesia/metabolismo , Hiperalgesia/fisiopatología , Masculino , Ratones , Dolor/metabolismo , Dolor/fisiopatología , Receptores de Quimiocina/genéticaRESUMEN
The α1-adrenergic receptors (α1-ARs), which belong to a G protein-coupled receptor family, consist of three highly homologous subtypes known as α1A-ARs, α1B-ARs, and α1D-ARs. Our previous findings suggested that α1A-ARs are an important target for imipramine and electroconvulsive therapy. The current study sought to evaluate whether S-(+)-niguldipine and B8805-033, two selective antagonists of α1A-ARs, can evoke antidepressant-like effects in the forced swim test in rats. Both compounds were administered at three time points (24, 5, and 1 h before testing), and the effects of three doses (2, 5, and 10 mg/kg) of each compound were investigated. S-(+)-Niguldipine produced no antidepressant-like effects other than a 14% reduction in immobility time at the highest dose. Although B8805-033 at a dose of 2 mg/kg did not influence the rats' behavior, higher B8805-033 doses (5 and 10 mg/kg) produced significant reductions in immobility time (approximately 42 and 44% vs. controls, respectively; P<0.01). However, this effect was abolished by the concomitant administration of WAY100135, a serotonin receptor antagonist, suggesting that the observed antidepressant-like effects of B8805-033 are unrelated to α1A-ARs. Nevertheless, given the current dearth of selective α1A-AR agonists, the question of whether this particular subtype could be involved in antidepressant therapy mechanisms remains unresolved.
Asunto(s)
Antagonistas de Receptores Adrenérgicos alfa 1/farmacología , Antidepresivos/farmacología , Dihidropiridinas/farmacología , Dioxinas/farmacología , Pirimidinonas/farmacología , Antagonistas de Receptores Adrenérgicos alfa 1/administración & dosificación , Animales , Antidepresivos/administración & dosificación , Dihidropiridinas/administración & dosificación , Dioxinas/administración & dosificación , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Masculino , Piperazinas/farmacología , Pirimidinonas/administración & dosificación , Ratas , Ratas Wistar , Receptores Adrenérgicos alfa 1/efectos de los fármacos , Receptores Adrenérgicos alfa 1/metabolismo , Natación , Factores de TiempoRESUMEN
The disturbances in neurotrophic support are thought to be one of the main causes of depression, which depend not only on the neurotrophins themselves but also on the molecules regulating their synthesis and effector functions. One such molecule is cAMP responsive element binding protein (CREB), which role in depression and antidepressant drugs mechanism of action has been extensively studied. However, CREB's effects vary depending on brain structure, necessitating specific transgenic models for studying its function. Moreover, deletion of CREB enhances cAMP response element modulator (CREM) expression, suspected to compensate for CREB in its absence. Previously, mice lacking CREB in noradrenergic neurons and CREM (Creb1DbhCreCrem-/-) showed to be insensitive to acute desipramine, whereas mice lacking only CREB (Creb1DbhCre) showed similar effects as wild type animals (w/t). As neurotrophic changes require chronic antidepressant treatment, in current study mice (w/t, Creb1DbhCre and Creb1DbhCreCrem-/-; both males and females) were given desipramine for 21â¯days, to assess the effects of the drug on CREB, neurotrophins and their receptors in the hippocampus and prefrontal cortex. Interestingly, desipramine had no effect on CREB in neither of studied groups. However, both male and female mice lacking CREB and CREM displayed alterations in neurotrophin-3 (NTF3) expression or protein levels, modulated by desipramine. These findings suggest NTF3 is connected with inhibited response to acute and probably chronic desipramine administration in Creb1DbhCreCrem-/- mice, although in w/t chronic desipramine had no effect on NTF3. Nevertheless, our findings give insight into the role of non-BDNF neurotrophins in the mechanism of antidepressant drugs.
RESUMEN
Background: Series of whole-body cryotherapy (WBC) among healthy and physically active individuals can potentially reduce inflammatory response, although exact mechanisms remain unclear. Methods: The impact of whole-body cryotherapy on inflammation modulators among 28 young males, categorized as non-training (NTR, N = 10), non-training with WBC (NTR-WBC, N = 10), and training with WBC (TR-WBC, N = 8), is investigated in this study. Over a period of eight weeks, NTR-WBC and TR-WBC subjects underwent 24 WBC treatments (-130 °C for 3 min, three times a week), examining changes in mRNA expressions of IL-1A, IL-6, IL-10, IFN-G, SIRT1, SIRT3, SOD2, GSS, and ICAM-1. Results: The received data indicate an acute inflammatory response to initial WBC (increased IL-1A, IL-6, and SIRT), with a greater effect in NTR-WBC. Subsequent sessions showed enhanced expressions of antioxidative genes in both WBC groups, particularly non-trained, suggesting improved oxidative stress adaptation. A notable decrease in ICAM-1 mRNA post-24 WBC treatments in NTR-WBC signifies a potential systemic anti-inflammatory effect. Conclusions: The findings of the study suggest that the combination of regular physical activity with WBC administered three times per week can potentially modulate inflammatory and antioxidant responses. This modulation is evidenced by changes in the expression of genes related to these processes.
RESUMEN
The motor cortex comprises the primary descending circuits for flexible control of voluntary movements and is critically involved in motor skill learning. Motor skill learning is impaired in patients with Parkinson's disease, but the precise mechanisms of motor control and skill learning are still not well understood. Here we have used transgenic mice, electrophysiology, in situ hybridization, and neural tract-tracing methods to target genetically defined cell types expressing D1 and D2 dopamine receptors in the motor cortex. We observed that putative D1 and D2 dopamine receptor-expressing neurons (D1+ and D2+, respectively) are organized in highly segregated, nonoverlapping populations. Moreover, based on ex vivo patch-clamp recordings, we showed that D1+ and D2+ cells have distinct morphological and electrophysiological properties. Finally, we observed that chemogenetic inhibition of D2+, but not D1+, neurons disrupts skilled forelimb reaching in adult mice. Overall, these results demonstrate that dopamine receptor-expressing cells in the motor cortex are highly segregated and play a specialized role in manual dexterity.
Asunto(s)
Corteza Motora , Ratones , Humanos , Animales , Corteza Motora/metabolismo , Receptores de Dopamina D1/metabolismo , Neuronas Dopaminérgicas/metabolismo , Ratones Transgénicos , Encéfalo/metabolismo , Cuerpo Estriado/metabolismoRESUMEN
Parkinson's disease (PD) is characterized by three main motor symptoms: bradykinesia, rigidity and tremor. PD is also associated with diverse non-motor symptoms that may develop in parallel or precede motor dysfunctions, ranging from autonomic system dysfunctions and impaired sensory perception to cognitive deficits and depression. Here, we examine the role of the progressive loss of dopaminergic transmission in behaviors related to the non-motor symptoms of PD in a mouse model of the disease (the TIF-IADATCreERT2 strain). We found that in the period from 5 to 12 weeks after the induction of a gradual loss of dopaminergic neurons, mild motor symptoms became detectable, including changes in the distance between paws while standing as well as the swing speed and step sequence. Male mutant mice showed no apparent changes in olfactory acuity, no anhedonia-like behaviors, and normal learning in an instrumental task; however, a pronounced increase in the number of operant responses performed was noted. Similarly, female mice with progressive dopaminergic neuron degeneration showed normal learning in the probabilistic reversal learning task and no loss of sweet-taste preference, but again, a robustly higher number of choices were performed in the task. In both males and females, the higher number of instrumental responses did not affect the accuracy or the fraction of rewarded responses. Taken together, these data reveal discrete, dopamine-dependent non-motor symptoms that emerge in the early stages of dopaminergic neuron degeneration.
RESUMEN
The incidence of metabolic syndrome (MetS) increases with age, especially in women. The role of microRNAs (miRs) in the regulation of metabolism is postulated. The aim of the study is to identify miRs that may be markers of MetS and to assess changes in miRs expression as a result of 10 and 20 whole-body cryotherapy treatments (WBC; 3 min, -120 °C) in postmenopausal women with MetS (M-60, BMI 30.56 ± 5.38 kg/m2), compared to healthy postmenopausal (H-60, BMI 25.57 ± 2.46 kg/m2) and healthy young women (H-20, BMI 22.90 ± 3.19 kg/m2). In a fasting state, before 1 WBC and after 10 WBCs, as well as 20 WBCs, the expression of miR-15a-5p, miR-21-5p, miR-23a-3p, miR-146a-5p, miR-197-3p, miR-223-3p, fasting blood glucose (FBG) and blood lipid profile were determined. miR-15a-5p and miR-21-5p were down-regulated in M-60, while miR-23a-3p and miR-197-3p were up-regulated, and miR-223-3p down-regulated in M-60 and H-60, compared to H-20. Significant positive correlations between up-regulated (mostly for miR-23-3p and miR-197-3p) and significant negative correlations between down-regulated (mostly for miR-15a-5p) miRs and markers of body composition as well as metabolic disorders were observed. After 20 WBCs, miR-15a-5p expression was up-regulated in all groups. In H-60, down-regulation of miR-197-3p expression occurred after 10 WBCs and 20 WBCs. Following 10 WBCs, FBG decreased in all groups, which intensified in M-60 post-20 WBCs. In our research, it has been shown that miR-23a-3p and miR-197-3p are accurate markers of MetS and MetS risk factors, while miR-15a-5p and miR-23a-3p are precise markers of body composition disorders. WBC is an effective treatment for up-regulating miR-15a-5p and lowering glucose levels in young and postmenopausal women and down-regulating miR-197-3p expression in postmenopausal women. It may be an adjunctive effective treatment method in MetS and hyperglycemia.
RESUMEN
BACKGROUND: Parkinson's disease (PD) is a motor disorder characterized by the degeneration of dopaminergic neurons, putatively due to the accumulation of α-synuclein (α-syn) in Lewy bodies (LBs) in Substantia Nigra. PD is also associated with the formation of LBs in brain areas responsible for emotional and cognitive regulation such as the amygdala and prefrontal cortex, and concurrent depression prevalence in PD patients. The exact link between dopaminergic cell loss, α-syn aggregation, depression, and stress, a major depression risk factor, is unclear. Therefore, we aimed to explore the interplay between sensitivity to chronic stress and α-syn aggregation. METHODS: Bilateral injections of α-syn preformed fibrils (PFFs) into the striatum of C57Bl/6 J mice were used to induce α-syn aggregation. Three months after injections, animals were exposed to chronic social defeat stress. RESULTS: α-syn aggregation did not affect stress susceptibility but independently caused increased locomotor activity in the open field test, reduced anxiety in the light-dark box test, and increased active time in the tail suspension test. Ex vivo analysis revealed modest dopaminergic neuron loss in the substantia nigra and reduced dopaminergic innervation in the dorsal striatum in PFFs injected groups. α-Syn aggregates were prominent in the amygdala, prefrontal cortex, and substantia nigra, with minimal α-syn aggregation in the raphe nuclei and locus coeruleus. CONCLUSIONS: Progressive bilateral α-syn aggregation might lead to compensatory activity increase and alterations in emotionally regulated behavior, without affecting stress susceptibility. Understanding how α-syn aggregation and degeneration in specific brain structures contribute to depression and anxiety in PD patients requires further investigation.
Asunto(s)
Enfermedad de Parkinson , Animales , Humanos , Ratones , alfa-Sinucleína/metabolismo , Encéfalo/metabolismo , Cuerpo Estriado/metabolismo , Neuronas Dopaminérgicas/metabolismo , Sustancia Negra/metabolismoRESUMEN
The nucleolus represents an essential stress sensor for the cell. However, the molecular consequences of nucleolar damage and their possible link with neurodegenerative diseases remain to be elucidated. Here, we show that nucleolar damage is present in both genders in Parkinson's disease (PD) and in the pharmacological PD model induced by the neurotoxin 1,2,3,6-tetrahydro-1-methyl-4-phenylpyridine hydrochloride (MPTP). Mouse mutants with nucleolar disruption restricted to dopaminergic (DA) neurons show phenotypic alterations that resemble PD, such as progressive and differential loss of DA neurons and locomotor abnormalities. At the molecular level, nucleolar disruption results in increased p53 levels and downregulation of mammalian target of rapamycin (mTOR) activity, leading to mitochondrial dysfunction and increased oxidative stress, similar to PD. In turn, increased oxidative stress induced by MPTP causes mTOR and ribosomal RNA synthesis inhibition. Collectively, these observations suggest that the interplay between nucleolar dysfunction and increased oxidative stress, involving p53 and mTOR signaling, may constitute a destructive axis in experimental and sporadic PD.
Asunto(s)
Nucléolo Celular/patología , Dopamina/metabolismo , Neuronas/patología , Estrés Oxidativo , Trastornos Parkinsonianos/metabolismo , Trastornos Parkinsonianos/patología , Serina-Treonina Quinasas TOR/fisiología , 1-Metil-4-fenil-1,2,3,6-Tetrahidropiridina , Animales , Encéfalo/metabolismo , Encéfalo/patología , Nucléolo Celular/metabolismo , Eliminación de Gen , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Mutantes , Ratones Transgénicos , Mitocondrias/fisiología , Destreza Motora , Neuronas/metabolismo , Enfermedad de Parkinson/patología , Trastornos Parkinsonianos/fisiopatología , Proteínas del Complejo de Iniciación de Transcripción Pol1/genética , Transducción de Señal , Proteína p53 Supresora de Tumor/fisiologíaRESUMEN
Recent studies have indicated the involvement of chemokine-C-motif ligand 1 (XCL1) in nociceptive transmission; however, the participation of its two receptors, canonical chemokine-C-motif receptor 1 (XCR1) and integrin alpha-9 (ITGA9), recently recognized as a second receptor, has not been clarified to date. The aim was to explore by which of these receptors XCL1 reveals its pronociceptive properties and how the XCL1-XCR1 and XCL1-ITGA9 axes blockade/neutralization influence on pain-related behavior and opioid analgesia in the model of neuropathic pain. In our studies we used Albino Swiss mice which were exposed to the unilateral sciatic nerve chronic constriction injury (CCI) as a neuropathic pain model. Animals received single intrathecal (i.t.) injection of XCL1, XCL1 neutralizing antibodies, antagonist of XCR1 (vMIP-II) and neutralizing antibodies of ITGA9 (YA4), using lumbar puncture technique. Additionally we performed i.t. co-administration of abovementioned neutralizing antibodies and antagonists with single dose of morphine/buprenorphine. To assess pain-related behavior the von Frey and cold plate tests were used. To measure mRNA and protein level the RT-qPCR and Western Blot/Elisa/immunofluorescence techniques were performed, respectively. Statistical analysis was conducted using ANOVA with a Bonferroni correction. Presented studies have shown time-dependent upregulation of the mRNA and/or protein expression of XCL1 in the spinal cord after nerve injury as measured on day 1, 4, 7, 14, and 35. Our immunofluorescence study showed that XCL1 is released by astroglial cells located in the spinal cord, despite the neural localization of its receptors. Our results also provided the first evidence that the blockade/neutralization of both receptors, XCR1 and ITGA9, reversed hypersensitivity after intrathecal XCL1 administration in naive mice; however, neutralization of ITGA9 was more effective. In addition, the results proved that the XCL1 neutralizing antibody and, similarly, the blockade of XCR1 and neutralization of ITGA9 diminished thermal and mechanical hypersensitivity in nerve injury-exposed mice after 7 days. Additionally, neutralization of XCL1 improves morphine analgesia. Moreover, blockade of XCR1 positively influences buprenorphine effectiveness, and neutralization of ITGA9 enhances not only buprenorphine but also morphine analgesia. Therefore, blockade of the XCL1-ITGA9 interaction may serve as an innovative strategy for the polypharmacotherapy of neuropathic pain in combination with opioids.
Asunto(s)
Buprenorfina , Quimiocinas C , Neuralgia , Traumatismos de los Nervios Periféricos , Ratones , Animales , Neuralgia/tratamiento farmacológico , Neuralgia/etiología , Neuralgia/metabolismo , Analgésicos/farmacología , Analgésicos/uso terapéutico , Analgésicos Opioides/uso terapéutico , Morfina/farmacología , Morfina/uso terapéutico , Buprenorfina/uso terapéutico , Animales de Laboratorio , Receptores de Quimiocina/metabolismo , Traumatismos de los Nervios Periféricos/metabolismo , Integrinas/uso terapéutico , Quimiocinas C/genéticaRESUMEN
Parkinson's disease (PD) is a neurodegenerative disorder characterized by motor deficits caused by the loss of dopaminergic neurons in the substantia nigra (SN) and ventral tegmental area (VTA). However, clinical data revealed that not only the dopaminergic system is affected in PD. Postmortem studies showed degeneration of noradrenergic cells in the locus coeruleus (LC) to an even greater extent than that observed in the SN/VTA. Pharmacological models support the concept that modification of noradrenergic transmission can influence the PD-like phenotype induced by neurotoxins. Nevertheless, there are no existing data on animal models regarding the distant impact of noradrenergic degeneration on intact SN/VTA neurons. The aim of this study was to create a transgenic mouse model with endogenously evoked progressive degeneration restricted to noradrenergic neurons and investigate its long-term impact on the dopaminergic system. To this end, we selectively ablated the transcription initiation factor-IA (TIF-IA) in neurons expressing dopamine ß-hydroxylase (DBH) by the Cre-loxP system. This mutation mimics a condition of nucleolar stress affecting neuronal survival. TIF-IADbhCre mice were characterized by selective, progressive degeneration of noradrenergic neurons, followed by phenotypic alterations associated with sympathetic system impairment. Our studies did not show any loss of tyrosine hydroxylase (TH)-positive cells in the SN/VTA of mutant mice; however, we observed increased indices of oxidative stress, enhanced markers of glial cell activation, inflammatory processes and isolated degenerating cells positive for FluoroJade C. These results were supported by gene expression profiling of VTA and SN from TIF-IADbhCre mice, revealing that 34 out of 246 significantly regulated genes in the SN/VTA were related to PD. Overall, our results shed new light on the possible negative influence of noradrenergic degeneration on dopaminergic neurons, reinforcing the neuroprotective role of noradrenaline.
Asunto(s)
Mesencéfalo , Sustancia Negra , Animales , Neuronas Dopaminérgicas/metabolismo , Inflamación/metabolismo , Ratones , Norepinefrina/metabolismo , Estrés Oxidativo , Sustancia Negra/metabolismo , Tirosina 3-Monooxigenasa/metabolismo , Área Tegmental Ventral/metabolismoRESUMEN
BACKGROUND: Evidence indicates that Gα12, Gα13, and its downstream effectors, RhoA and Rac1, regulate neuronal morphology affected by stress. This study was aimed at investigating whether repeated stress influences the expression of proteins related to the Gα12/13 intracellular signaling pathway in selected brain regions sensitive to the effects of stress. Furthermore, the therapeutic impact of ß(1)adrenergic receptors (ß1AR) blockade was assessed. METHODS: Restraint stress (RS) model in mice (2 h/14 days) was used to assess prolonged stress effects on the mRNA expression of Gα12, Gα13, RhoA, Rac1 in the prefrontal cortex (PFC), hippocampus (HIP) and amygdala (AMY). In a separate study, applying RS model in rats (3-4 h/1 day or 14 days), we evaluated stress effects on the expression of Gα12, Gα11, Gαq, RhoA, RhoB, RhoC, Rac1/2/3 in the HIP. Betaxolol (BET), a selective ß1AR antagonist, was introduced (5 mg/kg/p.o./8-14 days) in the rat RS model to assess the role of ß1AR in stress effects. RT-qPCR and Western Blot were used for mRNA and protein assessments, respectively. RESULTS: Chronic RS decreased mRNA expression of Gα12 and increased mRNA for Rac1 in the PFC of mice. In the mice AMY, decreased mRNA expression of Gα12, Gα13 and RhoA was observed. Fourteen days of RS exposure increased RhoA protein level in the rats' HIP in the manner dependent on ß1AR activity. CONCLUSIONS: Together, these results suggest that repeated RS affects the expression of genes and proteins known to be engaged in neural plasticity, providing potential targets for further studies aimed at unraveling the molecular mechanisms of stress-related neuropsychiatric diseases.
Asunto(s)
Encéfalo/metabolismo , Subunidades alfa de la Proteína de Unión al GTP G12-G13/metabolismo , Neuronas/metabolismo , Restricción Física/fisiología , Transducción de Señal/fisiología , Proteínas de Unión al GTP rho/metabolismo , Proteína de Unión al GTP rhoA/metabolismo , Antagonistas de Receptores Adrenérgicos beta 1/farmacología , Animales , Encéfalo/efectos de los fármacos , Masculino , Ratones , Ratones Endogámicos C57BL , Neuronas/efectos de los fármacos , ARN Mensajero/metabolismo , Ratas , Ratas Wistar , Receptores Adrenérgicos beta 1/metabolismo , Transducción de Señal/efectos de los fármacosRESUMEN
Primary cilia (PC) are microtubule-based protrusions of the cell membrane transducing molecular signals during brain development. Here, we report that PC are required for maintenance of Substantia nigra (SN) dopaminergic (DA) neurons highly vulnerable in Parkinson's disease (PD). Targeted blockage of ciliogenesis in differentiated DA neurons impaired striato-nigral integrity in adult mice. The relative number of SN DA neurons displaying a typical auto-inhibition of spontaneous activity in response to dopamine was elevated under control metabolic conditions, but not under metabolic stress. Strikingly, in the absence of PC, the remaining SN DA neurons were less vulnerable to the PD neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridin (MPTP). Our data indicate conserved PC-dependent neuroadaptive responses to DA lesions in the striatum. Moreover, PC control the integrity and dopamine response of a subtype of SN DA neurons. These results reinforce the critical role of PC as sensors of metabolic stress in PD and other disorders of the dopamine system.
RESUMEN
Transcriptional and cellular-stress surveillance deficits are hallmarks of Huntington's disease (HD), a fatal autosomal-dominant neurodegenerative disorder caused by a pathological expansion of CAG repeats in the Huntingtin (HTT) gene. The nucleolus, a dynamic nuclear biomolecular condensate and the site of ribosomal RNA (rRNA) transcription, is implicated in the cellular stress response and in protein quality control. While the exact pathomechanisms of HD are still unclear, the impact of nucleolar dysfunction on HD pathophysiology in vivo remains elusive. Here we identified aberrant maturation of rRNA and decreased translational rate in association with human mutant Huntingtin (mHTT) expression. The protein nucleophosmin 1 (NPM1), important for nucleolar integrity and rRNA maturation, loses its prominent nucleolar localization. Genetic disruption of nucleolar integrity in vulnerable striatal neurons of the R6/2 HD mouse model decreases the distribution of mHTT in a disperse state in the nucleus, exacerbating motor deficits. We confirmed NPM1 delocalization in the gradually progressing zQ175 knock-in HD mouse model: in the striatum at a presymptomatic stage and in the skeletal muscle at an early symptomatic stage. In Huntington's patient skeletal muscle biopsies, we found a selective redistribution of NPM1, similar to that in the zQ175 model. Taken together, our study demonstrates that nucleolar integrity regulates the formation of mHTT inclusions in vivo, and identifies NPM1 as a novel, readily detectable peripheral histopathological marker of HD progression.
Asunto(s)
Enfermedad de Huntington , Animales , Cuerpo Estriado/metabolismo , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Humanos , Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo , Enfermedad de Huntington/metabolismo , Ratones , Neuronas/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismoRESUMEN
Transcription of rRNA genes is essential for maintaining nucleolar integrity, a hallmark for the healthy state and proliferation rate of a cell. Inhibition of rRNA synthesis leads to disintegration of the nucleolus, elevated levels of p53, and induction of cell suicide, identifying the nucleolus as a critical stress sensor. Whether deregulation of rRNA synthesis is causally involved in neurodegeneration by promoting cell death and/or by inhibiting cellular growth has however not been addressed. The transcription factor TIF-IA plays a central role in mammalian rRNA synthesis, regulating the transcriptional activity of RNA polymerase I. To investigate the consequences of nucleolar perturbation in the nervous system, we have chosen to specifically ablate the gene encoding the transcription factor TIF-IA in two different contexts: neural progenitors and hippocampal neurons. Here, we show that ablation of TIF-IA leads to impaired nucleolar activity and results in increased levels of the proapoptotic transcription factor p53 in both neural progenitors and hippocampal neurons but induces rapid apoptosis only in neural progenitors. Nondividing cells of the adult hippocampus are more refractory to loss of rRNA transcription and face a protracted degeneration. Our study provides an unexploited strategy to initiate neurodegeneration based on perturbation of nucleolar function and underscores a novel perspective to study the cellular and molecular changes involved in the neurodegenerative processes.
Asunto(s)
Apoptosis/genética , Hipocampo/metabolismo , Degeneración Nerviosa/genética , Neuronas/metabolismo , Proteínas del Complejo de Iniciación de Transcripción Pol1/fisiología , ARN Ribosómico/biosíntesis , Animales , Nucléolo Celular/genética , Nucléolo Celular/metabolismo , Nucléolo Celular/patología , Hipocampo/patología , Hipocampo/fisiopatología , Ratones , Ratones Noqueados , Ratones Transgénicos , Degeneración Nerviosa/metabolismo , Degeneración Nerviosa/fisiopatología , Neurogénesis/genética , Plasticidad Neuronal/genética , Neuronas/patología , Proteínas del Complejo de Iniciación de Transcripción Pol1/genética , ARN Ribosómico/genética , Células Madre/metabolismo , Células Madre/patología , Transcripción Genética/genética , Proteína p53 Supresora de Tumor/metabolismoRESUMEN
The family of CREB transcription factors is involved in a variety of biological processes including the development and plasticity of the nervous system. To gain further insight into the roles of CREB family members in the development of the embryonic brain, we examined the migratory phenotype of CREB1(Nescre)CREM(-/-) mutants. We found that the lack of CREB/CREM genes is accompanied by anatomical defects in specific layers of the olfactory bulb, hippocampus and cerebral cortex. These changes are associated with decreased Dab1 expression in CREB1(Nescre)CREM(-/-) mutants. Our results indicate that the lack of CREB/CREM genes, specifically in neural and glial progenitors, leads to migration abnormalities during brain development, suggesting that unidentified age-dependent factors modulate the role of CREB/CREM genes in neural development.
Asunto(s)
Encéfalo/embriología , Movimiento Celular/fisiología , Modulador del Elemento de Respuesta al AMP Cíclico/metabolismo , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Neuronas/fisiología , Animales , Encéfalo/anatomía & histología , Encéfalo/citología , Encéfalo/fisiología , Modulador del Elemento de Respuesta al AMP Cíclico/genética , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/genética , Ratones , Ratones Noqueados , Proteínas del Tejido Nervioso/genética , Neuronas/citologíaRESUMEN
Understanding underlying mechanisms of neurodegenerative diseases is fundamental to develop effective therapeutic intervention. Yet they remain largely elusive, but metabolic, and transcriptional dysregulation are common events. Sirtuin 1 (SIRT1) is a nicotinamide adenine dinucleotide (NAD+)-dependent lysine deacetylase, regulating transcription, and critical for the cellular adaptations to metabolic stress. SIRT1 regulates the transcription of ribosomal RNA (rRNA), connecting the energetic state with cell growth and function. The activity of the transcription initiation factor-IA (TIF-IA) is important for the transcriptional regulation of ribosomal DNA (rDNA) genes in the nucleolus, and is also sensitive to changes in the cellular energetic state. Moreover, TIF-IA is responsive to nutrient-deprivation, neurotrophic stimulation, and oxidative stress. Hence, both SIRT1 and TIF-IA connect changes in cellular stress with transcriptional regulation and metabolic adaptation. Moreover, they finely tune the activity of the transcription factor p53, maintain mitochondrial function, and oxidative stress responses. Here we reviewed and discussed evidence that SIRT1 and TIF-IA are regulated by shared pathways and their activities preserve neuronal homeostasis in response to metabolic stressors. We provide evidence that loss of rDNA transcription due to altered TIF-IA function alters SIRT1 expression and propose a model of interdependent feedback mechanisms. An imbalance of this signaling might be a critical common event in neurodegenerative diseases. In conclusion, we provide a novel perspective for the prediction of the therapeutic benefits of the modulation of SIRT1- and nucleolar-dependent pathways in metabolic and neurodegenerative diseases.
RESUMEN
BACKGROUND: The transcription factor CREB and the neurotrophin BDNF are important mood regulators due to their profound role in controlling the neuronal plasticity. Our previously published results from transgenic mice functionally lacking CREB in chosen neural populations have shown that BDNF upregulation evoked by chronic treatment with fluoxetine seems to be dependent on CREB residing exclusively in serotonergic neurons. To further elucidate this observation, we focused on the representative signaling cascades engaged in the regulation of BDNF production. METHODS: The study was carried out on mice lacking CREB in noradrenergic (Creb1DBHCre) or serotonergic (Creb1TPH2CreERT2) neurons in CREM deficient background. Animals received fluoxetine (10 mg/kg, ip) or desipramine (20 mg/kg, ip) for 21 days. The expression of following proteins and their phosphorylated forms was assessed by Western blot: CREB, BDNF, CaMKIIα, ERK1/2. RESULTS: We showed that consistent with previously observed BDNF upregulation, chronic treatment with fluoxetine causes an increase in the pool of active CaMKIIα in w/t males, while in Creb1TPH2CreERT2 mutants, this effect ceased along with the observed decrease in ERK1/2 phosphorylation. These effects were region- and sex-specific. We did not observe a similar pattern of changes regarding the levels of BDNF expression and the CaMKIIα, ERK1/2 kinases in Creb1DBHCre mice exposed to desipramine. However, sex-dependent changes in the regulation of CaMKIIα and ERK1/2 activity were also observed. CONCLUSIONS: Our study highlights the pivotal role of CREB in response to antidepressants, emphasizing different sex-dependent vulnerabilities to particular drugs and the important impact of CREM on the effects of CREB deletion.