RESUMEN
Sensing and response to environmental cues, such as pH and chloride (Cl-), is critical in enabling Mycobacterium tuberculosis (Mtb) colonization of its host. Utilizing a fluorescent reporter Mtb strain in a chemical screen, we have identified compounds that dysregulate Mtb response to high Cl- levels, with a subset of the hits also inhibiting Mtb growth in host macrophages. Structure-activity relationship studies on the hit compound "C6," or 2-(4-((2-(ethylthio)pyrimidin-5-yl)methyl)piperazin-1-yl)benzo[d]oxazole, demonstrated a correlation between compound perturbation of Mtb Cl- response and inhibition of bacterial growth in macrophages. C6 accumulated in both bacterial and host cells, and inhibited Mtb growth in cholesterol media, but not in rich media. Subsequent examination of the Cl- response of Mtb revealed an intriguing link with bacterial growth in cholesterol, with increased transcription of several Cl--responsive genes in the simultaneous presence of cholesterol and high external Cl- concentration, versus transcript levels observed during exposure to high external Cl- concentration alone. Strikingly, oral administration of C6 was able to inhibit Mtb growth in vivo in a C3HeB/FeJ murine infection model. Our work illustrates how Mtb response to environmental cues can intersect with its metabolism and be exploited in antitubercular drug discovery.
Asunto(s)
Antituberculosos/farmacología , Desarrollo de Medicamentos , Mycobacterium tuberculosis/efectos de los fármacos , Animales , Antituberculosos/química , Cloruros/metabolismo , Colesterol/metabolismo , Humanos , Concentración de Iones de Hidrógeno , Macrófagos/microbiología , Ratones , Pruebas de Sensibilidad Microbiana , Mycobacterium tuberculosis/crecimiento & desarrollo , Relación Estructura-ActividadRESUMEN
Growing evidence suggests that inhibition of the α3ß4 nicotinic acetylcholine receptor (nAChR) represents a promising therapeutic strategy to treat cocaine use disorder. Recently, aristoquinoline (1), an alkaloid from Aristotelia chilensis, was identified as an α3ß4-selective nAChR inhibitor. Here, we prepared 22 derivatives of 1 and evaluated their ability to inhibit the α3ß4 nAChR. These studies revealed structure-activity trends and several compounds with increased potency compared to 1 with few off-target liabilities. Additional mechanistic studies indicated that these compounds inhibit the α3ß4 nAChR noncompetitively, but do not act as channel blockers, suggesting they are negative allosteric modulators. Finally, using a cocaine-primed reinstatement paradigm, we demonstrated that 1 significantly attenuates drug-seeking behavior in an animal model of cocaine relapse. The results from these studies further support a role for the α3ß4 nAChR in the addictive properties of cocaine and highlight the possible utility of aristoquinoline derivatives in treating cocaine use disorder.
Asunto(s)
Alcaloides , Cocaína , Quinolinas , Receptores Nicotínicos , Animales , Alcaloides/farmacología , Alcaloides/uso terapéutico , Comportamiento de Búsqueda de Drogas , Antagonistas Nicotínicos/farmacología , Antagonistas Nicotínicos/uso terapéuticoRESUMEN
Chronic neuropathic pain is an increasingly prevalent societal issue that responds poorly to existing therapeutic strategies. The α9α10 nicotinic acetylcholine receptor (nAChR) has emerged as a potential target to treat neuropathic pain. However, challenges in expressing functional α9α10 nAChRs in mammalian cell lines have slowed the discovery of α9α10 ligands and studies into the relationship between α9α10 nAChRs and neuropathic pain. Here, we develop a cell line in the HEK293 background that stably expresses functional α9α10 nAChRs. By also developing cell lines expressing only α9 and α10 subunits, we identify distinct receptor pharmacology between homomeric α9 or α10 and heteromeric α9α10 nAChRs. Moreover, we demonstrate that incubation with nAChR ligands differentially regulates the expression of α9- or α10-containing nAChRs, suggesting a possible mechanism by which ligands may modify receptor composition and trafficking in α9- and α10-expressing cells. We then apply our α9α10 cell line in a screen of FDA-approved and investigational drugs to identify α9α10 ligands that provide new tools to probe α9α10 nAChR function. We demonstrate that one compound from this screen, diphenidol, possesses antinociceptive activity in a murine model of neuropathic pain. These results expand our understanding of α9α10 receptor pharmacology and provide new starting points for developing efficacious neuropathic pain treatments.
RESUMEN
For decades, ibogaineâthe main psychoactive alkaloid found in Tabernanthe ibogaâhas been investigated as a possible treatment for substance use disorders (SUDs) due to its purported ability to interrupt the addictive properties of multiple drugs of abuse. Of the numerous pharmacological actions of ibogaine and its derivatives, the inhibition of α3ß4 nicotinic acetylcholine receptors (nAChRs), represents a probable mechanism of action for their apparent anti-addictive activity. In this Perspective, we examine several classes of compounds that have been discovered and developed to target α3ß4 nAChRs. Specifically, by focusing on compounds that have proven efficacious in pre-clinical models of drug abuse and have been evaluated clinically, we highlight the promising potential of the α3ß4 nAChRs as viable targets to treat a wide array of SUDs. Additionally, we discuss the challenges faced by the existing classes of α3ß4 nAChR ligands that must be overcome to develop them into therapeutic treatments.
Asunto(s)
Ibogaína , Receptores Nicotínicos , Trastornos Relacionados con Sustancias , Humanos , Ibogaína/farmacología , Ibogaína/uso terapéutico , Trastornos Relacionados con Sustancias/tratamiento farmacológico , Relación Dosis-Respuesta a DrogaRESUMEN
With the growing crisis of antimicrobial resistance, it is critical to continue to seek out new sources of novel antibiotics. This need has led to renewed interest in natural product antimicrobials, specifically antimicrobial peptides. Nonlytic antimicrobial peptides are highly promising due to their unique mechanisms of action. One such peptide is apidaecin (Api), which inhibits translation termination through stabilization of the quaternary complex of the ribosome-apidaecin-tRNA-release factor. Synthetic derivatives of apidaecin have been developed, but structure-guided modifications have yet to be considered. In this work, we have focused on modifying key residues in the Api sequence that are responsible for the interactions that stabilize the quaternary complex. We present one of the first examples of a highly modified Api peptide that maintains its antimicrobial activity and interaction with the translation complex. These findings establish a starting point for further structure-guided optimization of Api peptides.