Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
1.
J Chem Ecol ; 49(11-12): 652-665, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37789096

RESUMEN

Individuals across various animal species communicate their presence to conspecifics. Especially phytophagous and parasitoid insects with their brood developing on limited resources rely on chemical cues, such as host-marking pheromones, to reduce intraspecific competition. Bark beetles are phytophagous insects with some species being economically and ecologically relevant forest pests. Several of them use the volatile compound verbenone to inhibit attraction and reduce intraspecific competition. However, in the Eurasian spruce bark beetle, Ips typographus (L.), temporal emission patterns did so far not quite support the putative function of verbenone as an indicator of densely colonised host trees. More importantly, it is currently unclear how well verbenone emission is actually related to colonisation density and thus intraspecific competition. Here, we inoculated Norway spruce logs with I. typographus at two defined colonisation densities in the greenhouse and measured the emission of verbenone and its precursors α-pinene and verbenol over time. Verbenone emission was 3-7 times greater from colonised logs compared to decaying logs without beetles during the major part of larval development. Furthermore, our data supports the quantitative hypothesis, that the termination of attack on a tree is mediated by a cessation of the release of verbenol and continuous emission of verbenone. The latter is most likely a passively produced host-marking cue reflecting the actual density of conspecifics since per-beetle emission was unaffected by colonisation density. These findings shed new light on the regulation of bark beetle mass aggregations, which are currently causing previously unseen economic damages in temperate forests.


Asunto(s)
Escarabajos , Picea , Gorgojos , Animales , Feromonas , Corteza de la Planta , Escarabajos/fisiología , Árboles/química , Picea/química
2.
Environ Sci Technol ; 56(3): 2021-2032, 2022 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-35048708

RESUMEN

As direct mediators between plants and soil, roots play an important role in metabolic responses to environmental stresses such as drought, yet these responses are vastly uncharacterized on a plant-specific level, especially for co-occurring species. Here, we aim to examine the effects of drought on root metabolic profiles and carbon allocation pathways of three tropical rainforest species by combining cutting-edge metabolomic and imaging technologies in an in situ position-specific 13C-pyruvate root-labeling experiment. Further, washed (rhizosphere-depleted) and unwashed roots were examined to test the impact of microbial presence on root metabolic pathways. Drought had a species-specific impact on the metabolic profiles and spatial distribution in Piper sp. and Hibiscus rosa sinensis roots, signifying different defense mechanisms; Piper sp. enhanced root structural defense via recalcitrant compounds including lignin, while H. rosa sinensis enhanced biochemical defense via secretion of antioxidants and fatty acids. In contrast, Clitoria fairchildiana, a legume tree, was not influenced as much by drought but rather by rhizosphere presence where carbohydrate storage was enhanced, indicating a close association with symbiotic microbes. This study demonstrates how multiple techniques can be combined to identify how plants cope with drought through different drought-tolerance strategies and the consequences of such changes on below-ground organic matter composition.


Asunto(s)
Sequías , Raíces de Plantas , Metabolómica , Raíces de Plantas/metabolismo , Plantas , Espectroscopía de Protones por Resonancia Magnética , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Estrés Fisiológico
3.
New Phytol ; 232(5): 1930-1943, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34523149

RESUMEN

The effect of drought on the interplay of processes controlling carbon partitioning into plant primary and secondary metabolisms, such as respiratory CO2 release and volatile organic compound (VOC) biosynthesis, is not fully understood. To elucidate the effect of drought on the fate of cellular C sources into VOCs vs CO2 , we conducted tracer experiments with 13 CO2 and position-specific 13 C-labelled pyruvate, a key metabolite between primary and secondary metabolisms, in Scots pine seedlings. We determined the stable carbon isotope composition of leaf exchanged CO2 and VOC. Drought reduced the emission of the sesquiterpenes α-farnesene and ß-farnesene but did not affect 13 C-incorporation from 13 C-pyruvate. The labelling patterns suggest that farnesene biosynthesis partially depends on isopentenyl diphosphate crosstalk between chloroplasts and cytosol, and that drought inhibits this process. Contrary to sesquiterpenes, drought did not affect emission of isoprene, monoterpenes and some oxygenated compounds. During the day, pyruvate was used in the TCA cycle to a minor degree but was mainly consumed in pathways of secondary metabolism. Drought partly inhibited such pathways, while allocation into the TCA cycle increased. Drought caused a re-direction of pyruvate consuming pathways, which contributed to maintenance of isoprene and monoterpene production despite strongly inhibited photosynthesis. This underlines the importance of these volatiles for stress tolerance.


Asunto(s)
Pinus sylvestris , Compuestos Orgánicos Volátiles , Carbono , Sequías , Plantones
4.
New Phytol ; 231(5): 1708-1719, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34028817

RESUMEN

Hydrogen isotope ratios of plant lipids are used for paleoclimate reconstruction, but are influenced by both source water and biosynthetic processes. Measuring 2 H : 1 H ratios of multiple compounds produced by different pathways could allow these effects to be separated, but hydrogen isotope fractionations during isoprenoid biosynthesis remain poorly constrained. To investigate how hydrogen isotope fractionation during isoprenoid biosynthesis is influenced by molecular exchange between the cytosolic and plastidial production pathways, we paired position-specific 13 C-pyruvate labeling with hydrogen isotope measurements of lipids in Pachira aquatica saplings. We find that acetogenic compounds primarily incorporated carbon from 13 C2-pyruvate, whereas isoprenoids incorporated 13 C1- and 13 C2-pyruvate equally. This indicates that cytosolic pyruvate is primarily introduced into plastidial isoprenoids via glyceraldehyde 3-phosphate and that plastidial isoprenoid intermediates are incorporated into cytosolic isoprenoids. Probably as a result of the large differences in hydrogen isotope fractionation between plastidial and cytosolic isoprenoid pathways, sterols from P. aquatica are at least 50‰ less 2 H-enriched relative to phytol than sterols in other plants. These results provide the first experimental evidence that incorporation of plastidial intermediates reduces 2 H : 1 H ratios of sterols. This suggests that relative offsets between the 2 H : 1 H ratios of sterols and phytol can trace exchange between the two isoprenoid synthesis pathways.


Asunto(s)
Hidrógeno , Isótopos , Lípidos , Esteroles , Terpenos
5.
Plant Cell Environ ; 44(8): 2744-2764, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33822379

RESUMEN

The widespread ascomycetous fungus Diplodia pinea is a latent, necrotrophic pathogen in Pinus species causing severe damages and world-wide economic losses. However, the interactions between pine hosts and virulent D. pinea are largely not understood. In the present study, systemic defence responses were investigated in non-inoculated, asymptomatic needles and roots of D. pinea infected saplings of two P. sylvestris provenances under controlled greenhouse conditions. Here, we show that D. pinea infection induced a multitude of systemic responses of the phytohormone profiles and metabolic traits. Shared systemic responses of both pine provenances in needles and roots included increased abscisic acid and jasmonic acid levels. Exclusively in the roots of both provenances, enhanced salicylic acid and reduced indole-3-acetic acid levels, structural biomass, and elevated activities of anti-oxidative enzymes were observed. Despite these similarities, the two pine provenances investigated different significantly in the systemic responses of both, phytohormone profiles and metabolic traits in needles and roots. However, the different systemic responses did not prevent subsequent destruction of non-inoculated needles, but rather prevented damage to the roots. Our results provide a detailed view on systemic defence mechanisms of pine hosts that are of particular significance for the selection of provenances with improved defence capacity.


Asunto(s)
Ascomicetos/patogenicidad , Pinus sylvestris/metabolismo , Pinus sylvestris/microbiología , Reguladores del Crecimiento de las Plantas/metabolismo , Ácido Abscísico/metabolismo , Antioxidantes/metabolismo , Carbono/metabolismo , Celulosa/metabolismo , Ciclopentanos/metabolismo , Interacciones Huésped-Patógeno/fisiología , Peróxido de Hidrógeno/metabolismo , Lignina/metabolismo , Nitrógeno/metabolismo , Oxilipinas/metabolismo , Pigmentos Biológicos/metabolismo , Enfermedades de las Plantas/microbiología , Raíces de Plantas/metabolismo , Raíces de Plantas/microbiología , Brotes de la Planta/metabolismo , Brotes de la Planta/microbiología , Especies Reactivas de Oxígeno/metabolismo , Metabolismo Secundario
6.
Oecologia ; 197(4): 903-919, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33880635

RESUMEN

Climate change is increasing the frequency and intensity of warming and drought periods around the globe, currently representing a threat to many plant species. Understanding the resistance and resilience of plants to climate change is, therefore, urgently needed. As date palm (Phoenix dactylifera) evolved adaptation mechanisms to a xeric environment and can tolerate large diurnal and seasonal temperature fluctuations, we studied the protein expression changes in leaves, volatile organic compound emissions, and photosynthesis in response to variable growth temperatures and soil water deprivation. Plants were grown under controlled environmental conditions of simulated Saudi Arabian summer and winter climates challenged with drought stress. We show that date palm is able to counteract the harsh conditions of the Arabian Peninsula by adjusting the abundances of proteins related to the photosynthetic machinery, abiotic stress and secondary metabolism. Under summer climate and water deprivation, these adjustments included efficient protein expression response mediated by heat shock proteins and the antioxidant system to counteract reactive oxygen species formation. Proteins related to secondary metabolism were downregulated, except for the P. dactylifera isoprene synthase (PdIspS), which was strongly upregulated in response to summer climate and drought. This study reports, for the first time, the identification and functional characterization of the gene encoding for PdIspS, allowing future analysis of isoprene functions in date palm under extreme environments. Overall, the current study shows that reprogramming of the leaf protein profiles confers the date palm heat- and drought tolerance. We conclude that the protein plasticity of date palm is an important mechanism of molecular adaptation to environmental fluctuations.


Asunto(s)
Phoeniceae , Sequías , Fotosíntesis , Hojas de la Planta , Arabia Saudita , Estrés Fisiológico
7.
Plant Cell Environ ; 43(7): 1766-1778, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32266975

RESUMEN

Norway spruce is a conifer storing large amounts of terpenoids in resin ducts of various tissues. Parts of the terpenoids stored in needles can be emitted together with de novo synthesized terpenoids. Since previous studies provided hints on xylem transported terpenoids as a third emission source, we tested if terpenoids are transported in xylem sap of Norway spruce. We further aimed at understanding if they might contribute to terpenoid emission from needles. We determined terpenoid content and composition in xylem sap, needles, bark, wood and roots of field grown trees, as well as terpenoid emissions from needles. We found considerable amounts of terpenoids-mainly oxygenated compounds-in xylem sap. The terpenoid concentration in xylem sap was relatively low compared with the content in other tissues, where terpenoids are stored in resin ducts. Importantly, the terpenoid composition in the xylem sap greatly differed from the composition in wood, bark or roots, suggesting that an internal transport of terpenoids takes place at the sites of xylem loading. Four terpenoids were identified in xylem sap and emissions, but not within needle tissue, suggesting that these compounds are likely derived from xylem sap. Our work gives hints that plant internal transport of terpenoids exists within conifers; studies on their functions should be a focus of future research.


Asunto(s)
Transporte Biológico , Picea/metabolismo , Terpenos/metabolismo , Xilema/metabolismo , Hojas de la Planta/metabolismo , Raíces de Plantas/metabolismo
8.
Planta ; 249(2): 481-495, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30259170

RESUMEN

MAIN CONCLUSION: Atmospheric p CO 2 impacts Quercus petraea biomass production and cell wall composition of the leaves in favor of cellulose at the expense of lignin, and enhances foliar non-structural carbohydrate levels and sucrose contents in a pCO 2 concentration-dependent manner. Sessile oak (Quercus petraea Liebl.) was grown for ca. half a year from seeds at ambient control (525 ppm), 750, 900, and 1000 ppm atmospheric pCO2 under controlled conditions. Increasing pCO2 enhanced biomass production, modified the cell wall composition of the leaves in favor of cellulose at the expense of lignin, and enhanced the foliar non-structural carbohydrate level, in particular the sucrose content; as well as total N content of leaves by increased levels of all major N fractions, i.e., soluble proteins, total amino acids, and structural N. The enhanced total amino acid level was largely due to 2-ketoglutarate and oxalo acetate-derived compounds. Increasing pCO2 alleviated oxidative stress in the leaves as indicated by reduced H2O2 contents. High in vitro glutathione reductase activity at reduced H2O2 contents suggests enhanced ROS scavenging, but increased lipid peroxidation may also have contributed, as indicated by a negative correlation between malone dialdehyde and H2O2 contents. Almost all these effects were at least partially reversed, when pCO2 exceeded 750 or 900 ppm. Apparently, the interaction of atmospheric pCO2 with leaf structural and physiological traits of Q. petraea seedlings is characterized by a dynamic response depending on the pCO2 level.


Asunto(s)
Dióxido de Carbono/metabolismo , Hojas de la Planta/anatomía & histología , Quercus/anatomía & histología , Plantones/anatomía & histología , Atmósfera , Metabolismo de los Hidratos de Carbono , Dióxido de Carbono/farmacología , Pared Celular/metabolismo , Celulosa/metabolismo , Relación Dosis-Respuesta a Droga , Lignina/metabolismo , Malondialdehído/metabolismo , Hojas de la Planta/metabolismo , Hojas de la Planta/fisiología , Quercus/metabolismo , Quercus/fisiología , Plantones/metabolismo , Plantones/fisiología
9.
New Phytol ; 223(4): 1973-1988, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31093986

RESUMEN

We studied acclimation of leaf gas exchange to differing seasonal climate and soil water availability in slow-growing date palm (Phoenix dactylifera) seedlings. We used an extended Arrhenius equation to describe instantaneous temperature responses of leaf net photosynthesis (A) and stomatal conductance (G), and derived physiological parameters suitable for characterization of acclimation (Topt , Aopt and Tequ ). Optimum temperature of A (Topt ) ranged between 20-33°C in winter and 28-45°C in summer. Growth temperature (Tgrowth ) explained c. 50% of the variation in Topt , which additionally depended on leaf water status at the time of measurement. During water stress, light-saturated rates of A at Topt (i.e. Aopt ) were reduced to 30-80% of control levels, albeit not limited by CO2 supply per se. Equilibrium temperature (Tequ ), around which A/G and substomatal [CO2 ] are constant, remained tightly coupled with Topt . Our results suggest that acclimatory shifts in Topt and Aopt reflect a balance between maximization of photosynthesis and minimization of the risk of metabolic perturbations caused by imbalances in cellular [CO2 ]. This novel perspective on acclimation of leaf gas exchange is compatible with optimization theory, and might help to elucidate other acclimation and growth strategies in species adapted to differing climates.


Asunto(s)
Aclimatación , Sequías , Calor , Phoeniceae/fisiología , Fotosíntesis , Estomas de Plantas/fisiología , Análisis de Varianza , Dióxido de Carbono/metabolismo , Desarrollo de la Planta , Transpiración de Plantas , Estaciones del Año , Suelo , Presión de Vapor , Agua
10.
J Exp Bot ; 70(20): 5827-5838, 2019 10 24.
Artículo en Inglés | MEDLINE | ID: mdl-31396620

RESUMEN

The increasing occurrence of heatwaves has intensified temperature stress on terrestrial vegetation. Here, we investigate how two contrasting isoprene-emitting tropical species, Ficus benjamina and Pachira aquatica, cope with heat stress and assess the role of internal plant carbon sources for isoprene biosynthesis in relation to thermotolerance. To our knowledge, this is the first study to report isoprene emissions from P. aquatica. We exposed plants to two levels of heat stress and determined the temperature response curves for isoprene and photosynthesis. To assess the use of internal C sources in isoprene biosynthesis, plants were fed with 13C position-labelled pyruvate. F. benjamina was more heat tolerant with higher constitutive isoprene emissions and stronger acclimation to higher temperatures than P. aquatica, which showed higher induced isoprene emissions at elevated temperatures. Under heat stress, both isoprene emissions and the proportion of cytosolic pyruvate allocated into isoprene synthesis increased. This represents a mechanism that P. aquatica, and to a lesser extent F. benjamina, has adopted as an immediate response to sudden increase in heat stress. However, in the long run under prolonged heat, the species with constitutive emissions (F. benjamina) was better adapted, indicating that plants that invest more carbon into protective emissions of biogenic volatile organic compounds tend to suffer less from heat stress.


Asunto(s)
Butadienos/metabolismo , Citosol/metabolismo , Respuesta al Choque Térmico/fisiología , Hemiterpenos/metabolismo , Populus/metabolismo , Ácido Pirúvico/metabolismo , Fotosíntesis/fisiología , Temperatura
12.
Plant Physiol ; 174(2): 798-814, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28446637

RESUMEN

Water limitation of plants causes stomatal closure to prevent water loss by transpiration. For this purpose, progressing soil water deficit is communicated from roots to shoots. Abscisic acid (ABA) is the key signal in stress-induced stomatal closure, but ABA as an early xylem-delivered signal is still a matter of debate. In this study, poplar plants (Populus × canescens) were exposed to water stress to investigate xylem sap sulfate and ABA, stomatal conductance, and sulfate transporter (SULTR) expression. In addition, stomatal behavior and expression of ABA receptors, drought-responsive genes, transcription factors, and NCED3 were studied after feeding sulfate and ABA to detached poplar leaves and epidermal peels of Arabidopsis (Arabidopsis thaliana). The results show that increased xylem sap sulfate is achieved upon drought by reduced xylem unloading by PtaSULTR3;3a and PtaSULTR1;1, and by enhanced loading from parenchyma cells into the xylem via PtaALMT3b. Sulfate application caused stomatal closure in excised leaves and peeled epidermis. In the loss of sulfate-channel function mutant, Atalmt12, sulfate-triggered stomatal closure was impaired. The QUAC1/ALMT12 anion channel heterologous expressed in oocytes was gated open by extracellular sulfate. Sulfate up-regulated the expression of NCED3, a key step of ABA synthesis, in guard cells. In conclusion, xylem-derived sulfate seems to be a chemical signal of drought that induces stomatal closure via QUAC1/ALMT12 and/or guard cell ABA synthesis.


Asunto(s)
Ácido Abscísico/biosíntesis , Proteínas de Arabidopsis/metabolismo , Transportadores de Anión Orgánico/metabolismo , Estomas de Plantas/fisiología , Sulfatos/metabolismo , Xilema/metabolismo , Ácido Abscísico/metabolismo , Animales , Arabidopsis/fisiología , Proteínas de Arabidopsis/genética , Sequías , Femenino , Regulación de la Expresión Génica de las Plantas , Mutación , Oocitos/metabolismo , Transportadores de Anión Orgánico/genética , Células Vegetales/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Populus/fisiología , Transducción de Señal , Xenopus laevis , Xilema/química
13.
Plant Cell Environ ; 41(4): 737-754, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29240991

RESUMEN

Phytopathogenic fungi infections induce plant defence responses that mediate changes in metabolic and signalling processes with severe consequences for plant growth and development. Sphaeropsis tip blight, induced by the endophytic fungus Sphaeropsis sapinea that spreads from stem tissues to the needles, is the most widespread disease of conifer forests causing dramatic economic losses. However, metabolic consequences of this disease on bark and wood tissues of its host are largely unexplored. Here, we show that diseased host pines experience tissue dehydration in both bark and wood. Increased cytokinin and declined indole-3-acetic acid levels were observed in both tissues and increased jasmonic acid and abscisic acid levels exclusively in the wood. Increased lignin contents at the expense of holo-cellulose with declined structural biomass of the wood reflect cell wall fortification by S. sapinea infection. These changes are consistent with H2 O2 accumulation in the wood, required for lignin polymerization. Accumulation of H2 O2 was associated with more oxidized redox states of glutathione and ascorbate pools. These findings indicate that S. sapinea affects both phytohormone signalling and the antioxidative defence system in stem tissues of its pine host during the infection process.


Asunto(s)
Antioxidantes/metabolismo , Ascomicetos , Pinus sylvestris/microbiología , Enfermedades de las Plantas/microbiología , Reguladores del Crecimiento de las Plantas/metabolismo , Ascomicetos/aislamiento & purificación , Ascomicetos/fisiología , Ácido Ascórbico/metabolismo , Celulosa/metabolismo , Glutatión Reductasa/metabolismo , Interacciones Huésped-Patógeno , Lignina/metabolismo , Oxidorreductasas/metabolismo , Pinus sylvestris/metabolismo , Corteza de la Planta/metabolismo , Madera/metabolismo
14.
New Phytol ; 214(2): 597-606, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28042877

RESUMEN

The present study was performed to elucidate the fate of carbon (C) and nitrogen (N) derived from protein of prey caught by carnivorous Dionaea muscipula. For this, traps were fed 13 C/15 N-glutamine (Gln). The release of 13 CO2 was continuously monitored by isotope ratio infrared spectrometry. After 46 h, the allocation of C and N label into different organs was determined and tissues were subjected to metabolome, proteome and transcriptome analyses. Nitrogen of Gln fed was already separated from its C skeleton in the decomposing fluid secreted by the traps. Most of the Gln-C and Gln-N recovered inside plants were localized in fed traps. Among nonfed organs, traps were a stronger sink for Gln-C compared to Gln-N, and roots were a stronger sink for Gln-N compared to Gln-C. A significant amount of the Gln-C was respired as indicated by 13 C-CO2 emission, enhanced levels of metabolites of respiratory Gln degradation and increased abundance of proteins of respiratory processes. Transcription analyses revealed constitutive expression of enzymes involved in Gln metabolism in traps. It appears that prey not only provides building blocks of cellular constituents of carnivorous Dionaea muscipula, but also is used for energy generation by respiratory amino acid degradation.


Asunto(s)
Aminoácidos/metabolismo , Carbono/metabolismo , Droseraceae/citología , Droseraceae/metabolismo , Dióxido de Carbono/metabolismo , Isótopos de Carbono/metabolismo , Respiración de la Célula , Metaboloma , Isótopos de Nitrógeno/metabolismo , Proteínas de Plantas/metabolismo
15.
J Environ Qual ; 45(1): 234-43, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26828179

RESUMEN

Evaluating the environmental benefits and consequences of urban trees supports their sustainable management in cities. Models such as i-Tree Eco enable decision-making by quantifying effects associated with particular tree species. Of specific concern are emissions of biogenic volatile organic compounds, particularly isoprene, that contribute to the formation of photochemical smog and ground level ozone. Few studies have quantified these potential disservices of urban trees, and current models predominantly use emissions data from trees that differ from those in our target region of subtropical Australia. The present study aimed (i) to quantify isoprene emission rates of three tree species that together represent 16% of the inventoried street trees in the target region; (ii) to evaluate outputs of the i-Tree Eco model using species-specific versus currently used, generic isoprene emission rates; and (iii) to evaluate the findings in the context of regional air quality. Isoprene emission rates of (Myrtaceae) and (Proteaceae) were 2.61 and 2.06 µg g dry leaf weight h, respectively, whereas (Sapindaceae) was a nonisoprene emitter. We substituted the generic isoprene emission rates with these three empirical values in i-Tree Eco, resulting in a 182 kg yr (97%) reduction in isoprene emissions, totaling 6284 kg yr when extrapolated to the target region. From these results we conclude that care has to be taken when using generic isoprene emission factors for urban tree models. We recommend that emissions be quantified for commonly planted trees, allowing decision-makers to select tree species with the greatest overall benefit for the urban environment.


Asunto(s)
Contaminantes Atmosféricos/análisis , Butadienos/análisis , Hemiterpenos/análisis , Pentanos/análisis , Árboles , Contaminación del Aire , Australia , Ciudades , Modelos Teóricos
16.
Planta ; 241(3): 579-89, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25398429

RESUMEN

MAIN CONCLUSION: Hypoxia leads to NO formation in poplar roots. Additionally, either NO or a NO derivative is transported from the roots to the shoot causing NO emission from aboveground plant organs. Nitric oxide (NO) is involved in the response of plants to various forms of stress including hypoxia. It also seems to play an important role in stomatal closure during stress exposure. In this study, we investigated the formation of NO in roots of intact poplar (Populus × canescens) plants in response to hypoxia, as well as its dependence on nitrate availability. We further addressed the question if root hypoxia triggers NO emission from aboveground plant parts, i.e., stems and leaves of young poplar trees. Our results indicate that NO is formed in poplar roots in response to hypoxia and that this production depends on the availability of nitrate and its conversion product nitrite. As long as nitrate was available in the nutrient solution, NO emission of roots occurred; in the range of the nitrate concentrations (10-100 µM) tested, NO emission was widely independent on nitrate concentration. However, the time period in which NO was emitted and the total amount of NO emitted strongly depended on the nitrate concentration of the solution. Hypoxia also led to increased NO emissions from the leaves and stems of the trees. There was a tight correlation between leaf and stem NO emission of hypoxia-treated plants. We propose that NO is produced by nitrate reductase in the roots and either NO itself, a metabolic NO precursor, or a NO derivative is transported in the xylem sap of the trees from the roots to the shoot thereby mediating NO emission from aboveground parts of the plant.


Asunto(s)
Óxido Nítrico/metabolismo , Oxígeno/metabolismo , Hojas de la Planta/metabolismo , Raíces de Plantas/metabolismo , Populus/metabolismo , Dióxido de Carbono/metabolismo , Nitratos/metabolismo , Plantones/metabolismo
17.
Plant Cell Environ ; 37(10): 2245-59, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24611781

RESUMEN

One major effect of global climate change will be altered precipitation patterns in many regions of the world. This will cause a higher probability of long-term waterlogging in winter/spring and flash floods in summer because of extreme rainfall events. Particularly, trees not adapted at their natural site to such waterlogging stress can be impaired. Despite the enormous economic, ecological and social importance of forest ecosystems, the effect of waterlogging on trees is far less understood than the effect on many crops or the model plant Arabidopsis. There is only a handful of studies available investigating the transcriptome and metabolome of waterlogged trees. Main physiological responses of trees to waterlogging include the stimulation of fermentative pathways and an accelerated glycolytic flux. Many energy-consuming, anabolic processes are slowed down to overcome the energy crisis mediated by waterlogging. A crucial feature of waterlogging tolerance is the steady supply of glycolysis with carbohydrates, particularly in the roots; stress-sensitive trees fail to maintain sufficient carbohydrate availability resulting in the dieback of the stressed tissues. The present review summarizes physiological and molecular features of waterlogging tolerance of trees; the focus is on carbon metabolism in both, leaves and roots of trees.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Metaboloma , Oxígeno/metabolismo , Estrés Fisiológico , Transcriptoma , Árboles/fisiología , Carbono/metabolismo , Dióxido de Carbono/metabolismo , Modelos Biológicos , Nitrógeno/metabolismo , Raíces de Plantas/genética , Raíces de Plantas/fisiología , Brotes de la Planta/genética , Brotes de la Planta/fisiología , Transpiración de Plantas/fisiología , Suelo , Árboles/genética , Agua/fisiología
18.
J Exp Bot ; 65(2): 755-66, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24420576

RESUMEN

Does Dionaea muscipula, the Venus flytrap, use a particular mechanism to attract animal prey? This question was raised by Charles Darwin 140 years ago, but it remains unanswered. This study tested the hypothesis that Dionaea releases volatile organic compounds (VOCs) to allure prey insects. For this purpose, olfactory choice bioassays were performed to elucidate if Dionaea attracts Drosophila melanogaster. The VOCs emitted by the plant were further analysed by GC-MS and proton transfer reaction-mass spectrometry (PTR-MS). The bioassays documented that Drosophila was strongly attracted by the carnivorous plant. Over 60 VOCs, including terpenes, benzenoids, and aliphatics, were emitted by Dionaea, predominantly in the light. This work further tested whether attraction of animal prey is affected by the nutritional status of the plant. For this purpose, Dionaea plants were fed with insect biomass to improve plant N status. However, although such feeding altered the VOC emission pattern by reducing terpene release, the attraction of Drosophila was not affected. From these results it is concluded that Dionaea attracts insects on the basis of food smell mimicry because the scent released has strong similarity to the bouquet of fruits and plant flowers. Such a volatile blend is emitted to attract insects searching for food to visit the deadly capture organ of the Venus flytrap.


Asunto(s)
Droseraceae/fisiología , Drosophila melanogaster/fisiología , Compuestos Orgánicos Volátiles/metabolismo , Animales , Bioensayo , Conducta Alimentaria/fisiología , Femenino , Masculino , Análisis de Componente Principal , Olfato/fisiología
19.
Oecologia ; 174(3): 839-51, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24141381

RESUMEN

Plant carnivory represents an exceptional means to acquire N. Snap traps of Dionaea muscipula serve two functions, and provide both N and photosynthate. Using (13)C/(15)N-labelled insect powder, we performed feeding experiments with Dionaea plants that differed in physiological state and N status (spring vs. autumn plants). We measured the effects of (15)N uptake on light-saturated photosynthesis (A(max)), dark respiration (R(D)) and growth. Depending on N status, insect capture briefly altered the dynamics of R(D)/A(max), reflecting high energy demand during insect digestion and nutrient uptake, followed by enhanced photosynthesis and growth. Organic N acquired from insect prey was immediately redistributed, in order to support swift renewal of traps and thereby enhance probability of prey capture. Respiratory costs associated with permanent maintenance of the photosynthetic machinery were thereby minimized. Dionaea's strategy of N utilization is commensurate with the random capture of large prey, occasionally transferring a high load of organic nutrients to the plant. Our results suggest that physiological adaptations to unpredictable resource availability are essential for Dionaea's success with regards to a carnivorous life style.


Asunto(s)
Droseraceae/metabolismo , Nitrógeno/metabolismo , Fotosíntesis , Adaptación Fisiológica , Animales , Respiración de la Célula , Droseraceae/crecimiento & desarrollo , Insectos , Isótopos de Nitrógeno/metabolismo
20.
Tree Physiol ; 2024 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-38795340

RESUMEN

Plants emit diverse volatile organic compounds (VOCs) from their leaves and roots for protection against biotic and abiotic stress. An important signaling cascade activated by aboveground herbivory is the jasmonic acid (JA) pathway that stimulates the production of VOCs. So far it remains unclear if the activation of this pathway also leads to enhanced VOC emissions from conifer roots, and how the interplay of above- and belowground defenses in plants are affected by multiple stressors. Therefore, we simultaneously analyzed needle and root VOC emissions of Picea abies saplings, as well as CO2 and H2O fluxes in response to aboveground JA treatment, heat stress and their interaction in a controlled climate chamber experiment. Continuous online VOC measurements by PTR-TOF-MS showed an inverse pattern of total needle and root VOC emissions, when plants were treated with JA and heat. While needle sesquiterpene emissions increased nine-fold one day after JA application, total root VOC emissions decreased. This was mainly due to reduced emissions of acetone and monoterpenes by roots. In response to aboveground JA treatment, root total carbon emitted as VOCs decreased from 31% to only 4%. While VOC emissions aboveground increased, net CO2 assimilation strongly declined due to JA treatment, resulting in net respiration during the day. Interestingly, root respiration was not affected by aboveground JA application. Under heat the effect of JA on VOC emissions of needles and roots was less pronounced. The buffering effect of heat on VOC emissions following JA treatment points towards an impaired defense reaction of the plants under multiple stress. Our results indicate efficient resource allocation within the plant to protect threatened tissues by a rather local VOC release. Roots may only be affected indirectly by reduced belowground carbon allocation, but are not involved directly in the JA-induced stress response.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA