Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Cell Biochem Funct ; 42(4): e4027, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38715184

RESUMEN

Bioactive phytocompounds are crucial components in all plants. Since the time of traditional medicine, the utilization of plants has been grounded in the potential of these bioactive compounds to treat or manage specific illnesses. These natural bioactive compounds have sparked growing interest in employing medicinal plants for addressing various conditions, such as inflammatory diseases, diabetes, and cancer. This study focuses on assessing the qualitative phytochemical composition, antioxidant potential, and cytotoxic effects of blueberry (Vaccinium sect. Cyanococcus) extract using three different solvents, namely water, ethanol, and methanol. The extract exhibited notable antioxidant activities, as evidenced by DPPH and H2O2 free radical scavenging assays. The cell viability assay also demonstrated cell growth inhibition in A549 cells. Furthermore, nine specific phytocompounds sourced from existing literature were selected for molecular docking studies against CDK6 and, AMPK key protein kinases which enhance the cancer progression. The molecular docking results also revealed favorable binding scores, with a high score of -9.5 kcal/mol in CDK6 protein and a maximum score of AMPK with targets of -8.8 kcal/mol. The selected phytocompounds' pharmacodynamic properties such as ADMET also supported the study. Furthermore, rutin stated that pre-dominantly present in blueberry plants shows a potent cytotoxicity effect in A549 cells. Functional annotations by bioinformatic analysis for rutin also revealed the strong enrichment in the involvement of PI3K/AKT1/STAT, and p53 signaling pathways. Based on this analysis, the identified rutin and other compounds hold a promising anticancer activity. Overall, the comprehensive evaluation of both in vitro and in silico data suggests that the Vaccinium sect. Cyanococcus extract could serve as a valuable source of pharmaceutical agents and may prove effective in future therapeutic applications.


Asunto(s)
Arándanos Azules (Planta) , Proliferación Celular , Receptores ErbB , Estrés Oxidativo , Extractos Vegetales , Factor de Transcripción STAT3 , Transducción de Señal , Proteína p53 Supresora de Tumor , Humanos , Extractos Vegetales/farmacología , Extractos Vegetales/química , Arándanos Azules (Planta)/química , Estrés Oxidativo/efectos de los fármacos , Factor de Transcripción STAT3/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Células A549 , Transducción de Señal/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Receptores ErbB/metabolismo , Interleucina-6/metabolismo , Simulación del Acoplamiento Molecular , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/patología , Supervivencia Celular/efectos de los fármacos , Antioxidantes/farmacología , Antioxidantes/química , Antioxidantes/metabolismo , Antineoplásicos Fitogénicos/farmacología , Antineoplásicos Fitogénicos/química , Antineoplásicos Fitogénicos/aislamiento & purificación , Ensayos de Selección de Medicamentos Antitumorales
2.
Curr Issues Mol Biol ; 45(2): 852-884, 2023 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-36826001

RESUMEN

The prevalence of obesity in contemporary society has brought attention to how serious it is all around the world. Obesity, a proinflammatory condition defined by hypertrophied adipocytes and immune cells that reside in adipose tissue, is characterized by elevated circulating levels of proinflammatory cytokines. The pro-inflammatory mediators trigger a number of inflammatory pathways and affect the phosphorylation of a number of insulin-signaling pathways in peripheral tissues. In this work, we pointed the outcome of the leaves of Carica papaya (C. papaya) on the inflammatory molecules by in vivo and in silico analysis in order to prove its mechanisms of action. Adipocytokines, antioxidant enzymes, gene and protein expression of pro-inflammatory signaling molecules (mTOR, TNF-α, IL-1ß, IL-6 and IKKß) by q-RT-PCR and immunohistochemistry, as well as histopathological analysis, in adipose tissues were carried out. C. papaya reinstated the levels of adipocytokines, antioxidant enzymes and mRNA levels of mTOR, TNF-α, IL-1ß, IL-6 and IKKß in the adipose tissues of type 2 diabetic rats. Molecular docking and dynamics simulation studies revealed that caffeic acid, transferulic acid and quercetin had the top hit rates against IKKß, TNF-α, IL-6, IL-1ß, and mTOR. This study concludes that C. papaya put back the altered effects in fatty tissue of type 2 diabetic rats by restoring the adipocytokines and the gene expression.

3.
Molecules ; 27(5)2022 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-35268696

RESUMEN

Natural products in the form of functional foods have become increasingly popular due to their protective effects against life-threatening diseases, low risk of adverse effects, affordability, and accessibility. Plant components such as phytosterol, in particular, have drawn a lot of press recently due to a link between their consumption and a modest incidence of global problems, such as Type 2 Diabetes mellitus (T2DM), cancer, and cardiovascular disease. In the management of diet-related metabolic diseases, such as T2DM and cardiovascular disorders, these plant-based functional foods and nutritional supplements have unquestionably led the market in terms of cost-effectiveness, therapeutic efficacy, and safety. Diabetes mellitus is a metabolic disorder categoriszed by high blood sugar and insulin resistance, which influence major metabolic organs, such as the liver, adipose tissue, and skeletal muscle. These chronic hyperglycemia fallouts result in decreased glucose consumption by body cells, increased fat mobilisation from fat storage cells, and protein depletion in human tissues, keeping the tissues in a state of crisis. In addition, functional foods such as phytosterols improve the body's healing process from these crises by promoting a proper physiological metabolism and cellular activities. They are plant-derived steroid molecules having structure and function similar to cholesterol, which is found in vegetables, grains, nuts, olive oil, wood pulp, legumes, cereals, and leaves, and are abundant in nature, along with phytosterol derivatives. The most copious phytosterols seen in the human diet are sitosterol, stigmasterol, and campesterol, which can be found in free form, as fatty acid/cinnamic acid esters or as glycosides processed by pancreatic enzymes. Accumulating evidence reveals that phytosterols and diets enriched with them can control glucose and lipid metabolism, as well as insulin resistance. Despite this, few studies on the advantages of sterol control in diabetes care have been published. As a basis, the primary objective of this review is to convey extensive updated information on the possibility of managing diabetes and associated complications with sterol-rich foods in molecular aspects.


Asunto(s)
Diabetes Mellitus Tipo 2 , Resistencia a la Insulina , Fitosteroles , Diabetes Mellitus Tipo 2/inducido químicamente , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Dieta , Humanos , Fitosteroles/farmacología , Fitosteroles/uso terapéutico , Esteroles
4.
J Pharm Bioallied Sci ; 16(Suppl 2): S1317-S1320, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38882754

RESUMEN

Tinospora cordifolia, commonly known as "Giloy" or "Guduchi," is a medicinal plant with a rich history in traditional medicine systems. The aqueous extract of Tinospora cordifolia stems has garnered attention due to its reported pharmacological activities. This study aimed to investigate the in vitro biological properties of the aqueous extract and complement the findings with in silico studies to gain insights into potential molecular interactions. The Tinospora cordifolia stem aqueous extract was subjected to a battery of in vitro assays to assess its biological properties. Anti-inflammatory activity was evaluated using invitro assay. To complement the in vitro findings, in silico studies involving molecular docking analyses were conducted to predict potential interactions between the extract's constituents and relevant biomolecular targets. The in vitro evaluation revealed significant anti-inflammatory activity of the Tinospora cordifolia stem aqueous extract, as evidenced by its ability to suppress the production of pro-inflammatory cytokines. In silico studies provided insights into the molecular interactions between the extract's bioactive constituents and key inflammatory and antioxidant targets, further supporting the observed biological properties. The combined in vitro biological assays and in silico studies offer a comprehensive assessment of the Tinospora cordifolia stem aqueous extract's potential therapeutic properties. The demonstrated anti-inflammatory activities align with the traditional use of Tinospora cordifolia and suggest its potential in managing inflammatory and oxidative stress-related disorders. The in silico insights provide a molecular understanding of the extract's mode of action, strengthening the rationale for further investigation and development of natural products derived from Tinospora cordifolia for pharmaceutical and medicinal applications.

5.
J Pharm Bioallied Sci ; 16(Suppl 2): S1308-S1311, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38882780

RESUMEN

Background: Crataeva nurvala, a medicinal plant with potential therapeutic properties, offers a promising avenue for the development of novel anti-inflammatory drugs. This study adopted a combined in silico and in vitro approach to investigate the anti-inflammatory potential of compounds derived from Crataeva nurvala. Materials and Methods: In the in silico phase, virtual screening and molecular docking analyses were conducted to identify bioactive compounds from Crataeva nurvala that could interact with key inflammatory targets. Subsequently, selected compounds were synthesized and subjected to in vitro experimentation. Cellular models were employed to assess the anti-inflammatory effects of Crataeva nurvala-derived compounds, focusing on the modulation of pro-inflammatory cytokine levels and the underlying signaling pathways. Results: Virtual screening and molecular docking led to the identification of several bioactive compounds with favorable interactions with inflammatory targets. In the in vitro experiments, treatment with Crataeva nurvala-derived compounds resulted in a significant reduction in pro-inflammatory cytokine production. Moreover, the compounds exhibited the ability to modulate inflammatory signaling pathways, further substantiating their anti-inflammatory potential. Conclusions: This study not only contributes to the development of effective anti-inflammatory drugs but also underscores the value of harnessing natural sources such as Crataeva nurvala for therapeutic interventions in inflammatory disorders. The dual-phase strategy presented here provides a robust framework for anti-inflammatory drug discovery and validation.

6.
J Pharm Bioallied Sci ; 16(Suppl 2): S1312-S1316, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38882845

RESUMEN

Background: Spermacoce hispida, a medicinal plant from the Rubiaceae family, has garnered attention for its traditional use and reported therapeutic properties. This study aimed to investigate the phytochemical composition and assess the anti-inflammatory and anti-oxidant activities of the ethanolic extract derived from Spermacoce hispida. Materials and Methods: Phytochemical screening of the ethanolic extract involved qualitative analysis to identify major phytoconstituents such as tannins, phenols, and acids. The anti-inflammatory activity was evaluated through in vitro assays, and anti-oxidant potential was assessed using established methods to measure scavenging activity against free radicals and reactive oxygen species. Results: Phytochemical screening revealed the presence of various bioactive constituents in the Spermacoce hispida ethanolic extract, including acid, tannin, protein, and phenolic compounds. Furthermore, the extract exhibited potent anti-oxidant activity, as evidenced by its ability to scavenge free radicals and attenuate ROS-induced oxidative stress. Conclusion: The findings of this study underscore the potential of Spermacoce hispida ethanolic extract as a source of bioactive compounds with anti-inflammatory and anti-oxidant properties. The presence of phytochemicals and the observed bioactivity support its traditional use and suggest potential therapeutic applications. These results contribute to the growing body of knowledge on natural products with health-promoting effects and provide a basis for further research aimed at developing pharmaceutical and medicinal interventions harnessing the benefits of Spermacoce hispida.

7.
Int J Biol Macromol ; 242(Pt 2): 124917, 2023 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-37207753

RESUMEN

Herbicides have been linked to a higher risk of developing diabetes. Certain herbicides also operate as environmental toxins. Glyphosate is a popular and extremely effective herbicide for weed control in grain crops that inhibits the shikimate pathway. It has been shown to negatively influence endocrine function. Few studies have demonstrated that glyphosate exposure results in hyperglycemic and insulin resistance; but the molecular mechanism underlying the diabetogenic potential of glyphosate on skeletal muscle, a primary organ that includes insulin-mediated glucose disposal, is unknown. In this study, we aimed to evaluate the impact of glyphosate on the detrimental changes in the insulin metabolic signaling in the gastrocnemius muscle. In vivo results showed that glyphosate exposure caused hyperglycemia, dyslipidemia, increased glycosylated hemoglobin (HbA1c), liver function, kidney function profile, and oxidative stress markers in a dose-dependent fashion. Conversely, hemoglobin and antioxidant enzymes were significantly reduced in glyphosate-induced animals indicating its toxicity is linked to induce insulin resistance. The histopathology of the gastrocnemius muscle and RT-PCR analysis of insulin signaling molecules revealed glyphosate-induced alteration in the expression of IR, IRS-1, PI3K, Akt, ß-arrestin-2, and GLUT4 mRNA. Lastly, molecular docking and dynamics simulations confirmed that glyphosate showed a high binding affinity with target molecules such as Akt, IRS-1, c-Src, ß-arrestin-2, PI3K, and GLUT4. The current work provides experimental proof that glyphosate exposure has a deleterious effect on the IRS-1/PI3K/Akt signaling pathways, which in turn causes the skeletal muscle to become insulin resistant and eventually develop type 2 diabetes mellitus.


Asunto(s)
Diabetes Mellitus Tipo 2 , Resistencia a la Insulina , Animales , Proteínas Proto-Oncogénicas c-akt/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Simulación del Acoplamiento Molecular , Insulina/metabolismo , Músculo Esquelético , beta-Arrestinas/metabolismo , beta-Arrestinas/farmacología , Glifosato
8.
Antioxidants (Basel) ; 11(12)2022 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-36552644

RESUMEN

Glyphosate, an endocrine disruptor, has an adverse impact on human health through food and also has the potential to produce reactive oxygen species (ROS), which can lead to metabolic diseases. Glyphosate consumption from food has been shown to have a substantial part in insulin resistance, making it a severe concern to those with type 2 diabetes (T2DM). However, minimal evidence exists on how glyphosate impacts insulin-mediated glucose oxidation in the liver. Hence the current study was performed to explore the potential of glyphosate toxicity on insulin signaling in the liver of experimental animals. For 16 weeks, male albino Wistar rats were given 50 mg, 100 mg and 250 mg/kg b. wt. of glyphosate orally. In the current study, glyphosate exposure group was linked to a rise in fasting sugar and insulin as well as a drop in serum testosterone. At the same time, in a dose dependent fashion, glyphosate exposure showed alternations in glucose metabolic enzymes. Glyphosate exposure resulted in a raise in H2O2 formation, LPO and a reduction in antioxidant levels those results in impact on membrane integrity and insulin receptor efficacy in the liver. It also registered a reduced levels of mRNA and protein expression of insulin receptor (IR), glucose transporter-2 (GLUT2) with concomitant increase in the production of proinflammatory factors such as JNK, IKKß, NFkB, IL-6, IL-1ß, and TNF-α as well as transcriptional factors like SREBP1c and PPAR-γ leading to pro-inflammation and cirrhosis in the liver which results in the development of insulin resistance and type 2 diabetes. Our present findings for the first time providing an evidence that exposure of glyphosate develops insulin resistance and type 2 diabetes by aggravating NFkB signaling pathway in liver.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA