Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Anal Chem ; 96(5): 1843-1851, 2024 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-38273718

RESUMEN

Developments in untargeted nuclear magnetic resonance (NMR) metabolomics enable the profiling of thousands of biological samples. The exploitation of this rich source of information requires a detailed quantification of spectral features. However, the development of a consistent and automatic workflow has been challenging because of extensive signal overlap. To address this challenge, we introduce the software Spectral Automated NMR Decomposition (SAND). SAND follows on from the previous success of time-domain modeling and automatically quantifies entire spectra without manual interaction. The SAND approach uses hybrid optimization with Markov chain Monte Carlo methods, employing subsampling in both time and frequency domains. In particular, SAND randomly divides the time-domain data into training and validation sets to help avoid overfitting. We demonstrate the accuracy of SAND, which provides a correlation of ∼0.9 with ground truth on cases including highly overlapped simulated data sets, a two-compound mixture, and a urine sample spiked with different amounts of a four-compound mixture. We further demonstrate an automated annotation using correlation networks derived from SAND decomposed peaks, and on average, 74% of peaks for each compound can be recovered in single clusters. SAND is available in NMRbox, the cloud computing environment for NMR software hosted by the Network for Advanced NMR (NAN). Since the SAND method uses time-domain subsampling (i.e., random subset of time-domain points), it has the potential to be extended to a higher dimensionality and nonuniformly sampled data.


Asunto(s)
Algoritmos , Imagen por Resonancia Magnética , Espectroscopía de Resonancia Magnética , Programas Informáticos , Metabolómica
2.
Anal Chem ; 93(36): 12162-12169, 2021 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-34473490

RESUMEN

The goal of the qNMR Summit is to take stock of the status quo and the recent developments in qNMR research and applications in a timely and accurate manner. It provides a platform for both advanced and novice qNMR practitioners to receive a well-rounded update and discuss potential qNMR-related applications and collaborations. For over a decade, scientists from academia, industry, nonprofit institutions, and governmental bodies have focused on the standardization of qNMR methodology, as well as its metrological and pharmacopeial utility. This paper reviews key content of qNMR Summits 1.0 to 4.0 and puts into perspective the outcomes and available transcripts of the October 2019 Summit 5.0, with attendees from the United States, Canada, Japan, Korea, and several European countries. Summit presentations focused on qNMR methodology in the pharmaceutical industry, advanced quantitation algorithms, and promising developments.


Asunto(s)
Tecnología , Canadá , Japón , Estándares de Referencia , Estados Unidos
3.
Magn Reson Chem ; 59(8): 757-791, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-33486830

RESUMEN

The CRAFT (Complete Reduction to Amplitude Frequency Table) technique, based on Bayesian analysis approach, converts FID and/or interferogram (time domain) to a frequency-amplitude table (tabular domain) in a robust, automated, and time-efficient fashion. This mini review/perspective presents an introduction to CRAFT as a processing workflow followed by a discussion of several practical 1D and 2D examples of its applicability and associated benefit. CRAFT provides high quality quantitative results for complex systems without any need for conventional preprocessing steps, such as phase and baseline corrections. Two-dimensional time domain data are typically truncated, particularly in the evolution dimension, and conventional processing after zero-filling and t1max -matched apodization masks potentially available peak resolution. The line broadening introduced by extensive zero-filling and severe apodization functions leads to the lack of clear resolution of cross peaks. CRAFT decimation of interferograms, on the other hand, requires minimal or no apodization prior to extraction of the NMR parameters and significantly improves the spectral linewidth of the cross peaks along F1 dimension compared to conventional (FT) processing. The tabular representation of the CRAFT2d cross peaks information can be visualized in a variety of frequency domain formats for conventional spectral interpretation as well as quantitative applications. A simple workflow to generate in silico oversampled interferogram (iSOS) is presented, and its potential benefit in CRAFT decimation of highly crowded 2D NMR is demonstrated. This report is meant as a collective thesis to present a potentially new paradigm in data processing that questions the need for hitherto unchallenged preprocessing steps, such as phase and baseline correction in 1D and zero-fill/severe apodization in 2D.

4.
Magn Reson Chem ; 56(6): 535-545, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-28913938

RESUMEN

The recently published CRAFT (complete reduction to amplitude frequency table) technique converts the raw FID data (i.e., time domain data) into a table of frequencies, amplitudes, decay rate constants, and phases. It offers an alternate approach to decimate time-domain data, with minimal preprocessing step. It has been shown that application of CRAFT technique to process the t1 dimension of the 2D data significantly improved the detectable resolution by its ability to analyze without the use of ubiquitous apodization of extensively zero-filled data. It was noted earlier that CRAFT did not resolve sinusoids that were not already resolvable in time-domain (i.e., t1 max dependent resolution). We present a combined NUS-IST-CRAFT approach wherein the NUS acquisition technique (sparse sampling technique) increases the intrinsic resolution in time-domain (by increasing t1 max), IST fills the gap in the sparse sampling, and CRAFT processing extracts the information without loss due to any severe apodization. NUS and CRAFT are thus complementary techniques to improve intrinsic and usable resolution. We show that significant improvement can be achieved with this combination over conventional NUS-IST processing. With reasonable sensitivity, the models can be extended to significantly higher t1 max to generate an indirect-DEPT spectrum that rivals the direct observe counterpart.

5.
Magn Reson Chem ; 55(3): 224-232, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-27160956

RESUMEN

Two-dimensional (2D) data are typically truncated in both dimensions, but invariably and severely so in the indirect dimension. These truncated FIDs and/or interferograms are extensively zero filled, and Fourier transformation of such zero-filled data is always preceded by a rapidly decaying apodization function. Hence, the frequency line width in the spectrum (at least parallel to the evolution dimension) is almost always dominated by the apodization function. Such apodization-driven line broadening in the indirect (t1 ) dimension leads to the lack of clear resolution of cross peaks in the 2D spectrum. Time-domain analysis (i.e. extraction of frequency, amplitudes, line width, and phase parameters directly from the FID, in this case via Bayesian modeling into a tabular format) of NMR data is another approach for spectral resonance characterization and quantification. The recently published complete reduction to amplitude frequency table (CRAFT) technique converts the raw FID data (i.e. time-domain data) into a table of frequencies, amplitudes, decay rate constants, and phases. CRAFT analyses of time-domain data require minimal or no apodization prior to extraction of the four parameters. We used the CRAFT processing approach for the decimation of the interferograms and compared the results from a variety of 2D spectra against conventional processing with and without linear prediction. The results show that use of the CRAFT technique to decimate the t1 interferograms yields much narrower spectral line width of the resonances, circumventing the loss of resolution due to apodization. Copyright © 2016 John Wiley & Sons, Ltd.

6.
Magn Reson Chem ; 52(5): 195-201, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24676961

RESUMEN

A modified version of the attached proton test (APT) sequence for (13)C spectral editing, which we call CRisis-APT (CRAPT), is developed and tested on representative organic compounds. CRAPT incorporates (13)C compensation for refocusing inefficiency with synchronized inversion sweeps (CRISIS) pulses in combination with (1)H broadband inversion pulses to give improved compensation for variations in (1)JCH along with improved refocusing efficiency. It is shown that CRAPT gives edited (13)C spectra with only small losses in sensitivity (between 8% and 15% for strychnine, 1, menthol, 2, cholecalciferol, 3, and isotachysterol, 4), compared with basic (13)C spectra obtained on the same compounds. CRAPT also gives significantly better signal/noise than DEPTQ for nonprotonated carbons. Therefore, we conclude that CRAPT is an improvement over APT or DEPTQ or a combination of DEPT135 with a full (13)C spectrum for routine (13)C spectral editing of organic compounds.

7.
Magn Reson Chem ; 51(12): 821-9, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24154986

RESUMEN

The intrinsic quantitative nature of NMR is increasingly exploited in areas ranging from complex mixture analysis (as in metabolomics and reaction monitoring) to quality assurance/control. Complex NMR spectra are more common than not, and therefore, extraction of quantitative information generally involves significant prior knowledge and/or operator interaction to characterize resonances of interest. Moreover, in most NMR-based metabolomic experiments, the signals from metabolites are normally present as a mixture of overlapping resonances, making quantification difficult. Time-domain Bayesian approaches have been reported to be better than conventional frequency-domain analysis at identifying subtle changes in signal amplitude. We discuss an approach that exploits Bayesian analysis to achieve a complete reduction to amplitude frequency table (CRAFT) in an automated and time-efficient fashion - thus converting the time-domain FID to a frequency-amplitude table. CRAFT uses a two-step approach to FID analysis. First, the FID is digitally filtered and downsampled to several sub FIDs, and secondly, these sub FIDs are then modeled as sums of decaying sinusoids using the Bayesian approach. CRAFT tables can be used for further data mining of quantitative information using fingerprint chemical shifts of compounds of interest and/or statistical analysis of modulation of chemical quantity in a biological study (metabolomics) or process study (reaction monitoring) or quality assurance/control. The basic principles behind this approach as well as results to evaluate the effectiveness of this approach in mixture analysis are presented.

8.
Magn Reson Chem ; 46(7): 683-9, 2008 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-18383431

RESUMEN

We propose a family of doubly compensated multiplicity-edited heteronuclear single quantum coherence (HSQC) pulse sequences. The key difference between our proposed sequences and the compensation of refocusing inefficiency with synchronized inversion sweeps (CRISIS)-HSQC experiments they are based on is that the conventional rectangular 180 degrees pulses on the proton channel in the latter have been replaced by the computer-optimized broadband inversion pulses (BIPs) with superior inversion performance as well as much improved tolerance to B(1) field inhomogeneity. Moreover, all adiabatic carbon 180 degrees pulses during the INEPT and reverse-INEPT periods in the CRISIS-HSQC sequences have also been replaced with the much shorter BIPs, while the adiabatic sweeps during the heteronuclear spin echo for multiplicity editing are kept in place in order to maintain the advantage of the CRISIS feature of the original sequences, namely J-independent refocusing of the one-bond (1)H--(13)C coupling constants. These modifications have also been implemented to the preservation of equivalent pathways (PEP)-HSQC experiments. We demonstrate through a detailed comparison that replacing the proton 180 degrees pulses with the BIPs provide additional sensitivity gain that can be mainly attributed to the improved tolerance to B(1) field inhomogeneity of the BIPs. The proposed sequences can be easily adapted for (19)F--(13)C correlations.


Asunto(s)
Resonancia Magnética Nuclear Biomolecular/métodos , Lasalocido/química , Estructura Molecular , Protones , Sensibilidad y Especificidad
9.
J Magn Reson ; 182(1): 173-7, 2006 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-16807015

RESUMEN

The nuclear Overhauser effect (NOE) is undoubtedly one of the most useful tools in NMR spectroscopy and is widely used in solving structural and conformational problems of small organic molecules and macromolecular systems alike. In particular, measurement of the kinetics of the NOE, often facilitated by selective 1D NOE buildup experiments, can generate invaluable quantitative distance information for the molecule being investigated. In practice, analysis of such kinetic NOE data routinely assumes a first-order approximation of the initial buildup rate. However, often times such an approximation holds true only for the shortest mixing times. As shown by Macura and others, the linear range of the NOE buildup obtained from 2D NOESY and exchange experiments can be substantially extended by simply scaling the NOE cross-peaks against the corresponding diagonal peaks. In this note, we demonstrate through a detailed analysis that the same approach can be applied to the analysis of 1D NOE data obtained with the DPFGSE NOE pulse sequence, one of the most widely used selective 1D NOE experiments today. We show that this approach allows the inclusion of data points acquired with much longer mixing times in the analysis and thus considerably improves the accuracy of the measured cross-relaxation rates and internuclear distances, while considerably simplifying the data analysis. Similar results can be obtained for the rotating frame DPFGSE ROE experiment.

10.
J Magn Reson ; 172(1): 110-7, 2005 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-15589414

RESUMEN

Diffusion-ordered NMR spectroscopy, while quite powerful, is limited by its inability to resolve signals that are severely overlapped in the proton spectrum. We present here a DOSY experiment that uses selective TOCSY as an editing/preparation period. With this method, well-resolved signals of the analytes are selectively excited and the magnetization subsequently transferred by isotropic mixing to resonances buried in the matrix background, which are then resolved by the ensuing DOSY sequence. Key to the success of our proposed method is the incorporation of a highly effective zero-quantum filter into the selective TOCSY preparation period, which prevents zero-quantum coherence from being carried into the DOSY part of the pulse sequence. Further improvement in spectral resolution can be obtained by expanding the proposed experiment into a 3D sequence and utilizing the homonuclear decoupling feature of the BASHD-TOCSY technique. Both pulse sequences were found to greatly simplify the DOSY spectrum of a 'dirty' sucrose/raffinose mixture, as the complex matrix background is no longer present to obscure or overlap with the signals of interests. Furthermore, complete resolution of the relevant signals was achieved with the 3D sequence.


Asunto(s)
Carbohidratos/química , Espectroscopía de Resonancia Magnética/métodos , Estructura Molecular , Rafinosa/química , Procesamiento de Señales Asistido por Computador , Sacarosa/química
11.
J Magn Reson ; 174(1): 110-5, 2005 May.
Artículo en Inglés | MEDLINE | ID: mdl-15809178

RESUMEN

We describe a unique band-selective method that utilizes a selective composite gradient to simultaneously achieve band selection and coherence pathway selection. This element is similar to the composite gradient known as the CLUB sandwich except the original broadband pulses have been replaced with selective pulses and the strengths of the antipolar gradients have been unbalanced. In this way, only the signals within the inversion band will continue to dephase throughout the duration of the element and satisfy the proper encoding-to-decoding gradient ratio necessary for coherence selection. Apart from the inverted polarity and asymmetry of the gradients, the band-selective CLUB sandwich is identical to the DPFGSE sequence and provides many of its desirable characteristics. We have successfully incorporated the band-selective CLUB into the DQF-COSY pulse sequence to create a band-selective experiment that offers the selectivity desired for resolution enhancement while maintaining excellent phase behavior. This is demonstrated on the congested aliphatic region of the ionophorous antibiotic Lasalocid A.


Asunto(s)
Antibacterianos/química , Lasalocido/química , Espectroscopía de Resonancia Magnética/métodos , Algoritmos , Estructura Molecular
12.
J Magn Reson ; 171(2): 201-6, 2004 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-15546745

RESUMEN

Compared to its 2D counterpart, the selective 1D NOESY experiment offers greatly simplified spectral interpretation and is invaluable to the structure elucidation of small-to-medium sized molecules, although its application is limited to well-resolved resonances only. The doubly selective 1D TOCSY-NOESY experiment allows the 1D NOESY experiment to be extended to resonances within overlapped spectral regions. However, existing methods do not address the critical issue of zero-quantum interference, which leads to severe anti-phase distortions to the line shape of scalar coupled spins and often complicates the identification of weak NOE enhancements. In this communication, we describe an improved selective TOCSY edited preparation (STEP) function and its application to the selective 1D NOESY experiment. The STEP function incorporates a novel zero-quantum filter introduced by Thrippleton and Keeler [Angew. Chem. Int. Ed. 42 (2003) 3938], which permits essentially complete suppression of zero-quantum coherence in a single scan. Residual anti-phase distortions due to spin-state mixing are removed using the double difference methodology reported by Shaka et al. [45th Experimental NMR Conference, Pacific Grove, USA, 2004]. The combined use of these techniques ensures that the final spectra are free of distortions, which is crucial to the reliable detection of weak NOE enhancements. Although employed as an additional preparation period in the example demonstrated here, the STEP function affords a general editing tool for spectral simplification and can be applied to a range of experiments.


Asunto(s)
Ionóforos/química , Lasalocido/química , Resonancia Magnética Nuclear Biomolecular/métodos
13.
J Magn Reson ; 165(2): 253-9, 2003 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-14643707

RESUMEN

Use of adiabatic pulses in broadband inversion and decoupling is well known. Replacement of the rectangular pi pulses in the INEPT and rev-INEPT parts of the HSQC and gHSQC experiments with adiabatic pulses substantially improves the sensitivity of these experiments. However, modulation of cross peak intensity in multiplicity-edited HSQC or gHSQC experiments can be quite severe. These modulations arise during the multiplicity-editing periods due to the inefficient refocusing of the spin-echo caused by the mismatch of the echo delay with the one-bond coupling constant. These modulations (which we call echo modulations) are field strength (and hence spectral width) independent. Use of adiabatic pulses with the inversion sweep synchronized to the 1H-13C coupling constant range typically observed in a 13C spectrum will provide substantial improvement in sensitivity. The inversion profile problems associated with rectangular pi pulses can be moderately compensated by composite pulse schemes and these schemes could prove to be reasonable alternatives to adiabatic pulses. However, the adiabatic sweep provides a unique method to compensate the echo modulations for multiplicity-edited experiments. The origin and the compensation of refocusing inefficiency with synchronized inversion sweep (CRISIS) method to minimize these modulations is described.

14.
J Org Chem ; 72(16): 6259-62, 2007 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-17604400

RESUMEN

Heteronuclear 19F-1H cross-polarization can be used effectively as a tool for both spectral filtering and editing in the NMR analysis of the increasing number of fluorine-containing compounds encountered in drug discovery. Combined with LC-MS, three-dimensional 19F-1H heteronuclear TOCSY filtered experiments based on this approach have enabled the simultaneous identification of a mixture of closely related dexamethasone derivatives without the need for isolation.


Asunto(s)
Fluorenos/química , Espectroscopía de Resonancia Magnética/instrumentación , Espectroscopía de Resonancia Magnética/métodos , Cromatografía Liquida/métodos , Dexametasona/química , Radioisótopos de Flúor/química , Espectrometría de Masas , Modelos Químicos , Conformación Molecular , Estructura Molecular , Espectrofotometría Ultravioleta
15.
Magn Reson Chem ; 43(2): 117-23, 2005 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-15643647

RESUMEN

CRISIS (Compensation of Refocusing Inefficiency with Synchronized Inversion Sweep) is a powerful technique for obtaining multiplicity-edited HSQC spectra without compromising sensitivity. However, the stringent requirement for the duration of the CRISIS waveforms makes them unsuitable for other functions, such as band selection or IMPRESS (IMProved REsolution using Symmetrically Shifted pulses). We report here a modified CRISIS-gHSQC pulse sequence employing time-reversed 13C pi/2 EBURP-2 pulses. This IC-bs-gHSQC (IMPRESS-CRISIS-bs-gHSQC) sequence was found to be equally useful for acquiring multiplicity-edited, band-selective spectra individually or in tandem with IMPRESS. Remarkably, the latter provides multiple spectra in significantly less time and is the preferred approach when several crowded regions need to be assigned unambiguously. The use of adiabatic sweeps and the CRISIS pulses enable IC-bs-gHSQC to give better sensitivity than the original IMPRESS sequence for band-selective spectra.

16.
Magn Reson Chem ; 42(3): 301-7, 2004 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-14971014

RESUMEN

Compensation of refocusing inefficiency in a gHMBC experiment by replacing the rectangular pi pulse with a pair of adiabatic pulses with synchronized inversion sweep (CRISIS) significantly improves the performance of the gHMBC experiment. The CRISIS-gHMBC experiment retains the pure absorptive shapes in F1 and hence results in better lineshape and higher resolution than the current versions of magnitude mode gHMBC spectra. When used as a broadband experiment, CRISIS-gHMBC, owing to better refocusing efficiency of the adiabatic pulse pairs, gives improved performance across the 13C spectral width. Moreover, it is shown that CRISIS-gHMBC is a robust and improved alternative and when used along with the IMPRESS (Improved Resolution using Symmetrically Shifted pulses) technique further increases the sensitivity and resolution without additional experimental time. The IMPRESS-CRISIS combination is demonstrated for broadband gHMBC and band-selective gHMBC experiments. The ICbs-gHMBC [IMPRESS-CRISIS-band-selective gHMBC] experiment is an attractive and better alternative to individual band-selective gHMBC.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA