Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Bioconjug Chem ; 33(5): 781-787, 2022 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-35437982

RESUMEN

Glycan binding often mediates extracellular macromolecular recognition events. Accurate characterization of these binding interactions can be difficult because of dissociation and scrambling that occur during purification and analysis steps. Use of photocrosslinking methods has been pursued to covalently capture glycan-dependent interactions in situ; however, use of metabolic glycan engineering methods to incorporate photocrosslinking sugar analogs is limited to certain cell types. Here, we report an exo-enzymatic labeling method to add a diazirine-modified sialic acid (SiaDAz) to cell surface glycoconjugates. The method involves the chemoenzymatic synthesis of diazirine-modified CMP-sialic acid (CMP-SiaDAz), followed by sialyltransferase-catalyzed addition of SiaDAz to desialylated cell surfaces. Cell surface SiaDAzylation is compatible with multiple cell types and is facilitated by endogenous extracellular sialyltransferase activity present in Daudi B cells. This method for extracellular addition of α2-6-linked SiaDAz enables UV-induced crosslinking of CD22, demonstrating the utility for covalent capture of glycan-mediated binding interactions.


Asunto(s)
Diazometano , Ácido N-Acetilneuramínico , Diazometano/química , Glicoproteínas/química , Ácido N-Acetilneuramínico/química , Polisacáridos/química , Ácidos Siálicos/química , Sialiltransferasas/química
2.
Langmuir ; 23(20): 10230-4, 2007 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-17722943

RESUMEN

In this work, we applied high-resolution atomic force microscopy (AFM) to identify and characterize similarities and differences in the spore surface morphology of strains from four species of Bacilli: B. anthracis, B. cereus, B. pumilis, and B. subtilis. Common features of the examined spores in the dry state included ridges that spanned the long axis of each spore, and nanometer-scale fine rodlets that covered the entire spore surface. However, important differences in these features between species permitted them to be distinguished by AFM. Specifically, each species possessed significant variation in ridge architecture, and the rodlet width in B. anthracis was significantly less than that of the other species. To characterize similarities and differences within a species, we examined three B. subtilis strains. The ridge patterns among the three strains were largely the same; however, we detected significant differences in the ridge dimensions. Taken together, these experiments provide important information about natural variation in spore surface morphology, define structural features that can serve as species- and strain-specific signatures, and give insight into the dynamics of spore coat flexibility and its role during spore dormancy and germination.


Asunto(s)
Bacillus/clasificación , Esporas Bacterianas/clasificación , Bacillus/fisiología , Microscopía de Fuerza Atómica , Especificidad de la Especie , Propiedades de Superficie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA