Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Small ; 15(43): e1904031, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31496116

RESUMEN

Uniform Ag nanocubes are reproducibly synthesized by a AgCl particle-mediated heterogeneous nucleation and disassembly process in polyol chemistry. By introducing N,N-dimethylformamide (DMF) in a conventional polyol method with HCl etchant, Ag nanocrystals (NCs) begin to be nucleated on the surface of AgCl-precipitated particles due to the promoted reduction reaction by DMF. The nucleated Ag NCs on the AgCl particles are grown to Ag nanocubes in shape by consuming Ag sources from the AgCl mother particles. Eventually the grown Ag nanocubes are disassembled from the mother AgCl particles because the AgCl particles are fully digested by the growing Ag nanocubes. Density functional theory calculation confirms that the Ag atoms can be favorably deposited on the (100) facet of AgCl particles and the Ag nuclei on the AgCl particles tend to reveal (100) facet.

3.
ACS Nano ; 18(35): 24128-24138, 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39163544

RESUMEN

Both uncontrolled Li dendrite growth and corrosion are major obstacles to the practical application of Li-metal batteries. Despite numerous attempts to address these challenges, effective solutions for dendrite-free reversible Li electrodeposition have remained elusive. Here, we demonstrate the horizontal Li electrodeposition on top of atomically polarized monolayer hexagonal boron nitride (hBN). Theoretical investigations revealed that the hexagonal lattice configuration and polarity of the monolayer hBN, devoid of dangling bonds, reduced the energy barrier for the surface diffusion of Li, thus facilitating reversible in-plane Li growth. Moreover, the single-atom-thick hBN deposited on a Cu current collector (monolayer hBN/Cu) facilitated the formation of an inorganic-rich, homogeneous solid electrolyte interphase layer, which enabled the uniform Li+ flux and suppressed Li corrosion. Consequently, Li-metal and anode-free full cells containing the monolayer hBN/Cu exhibited improved rate performance and cycle life. This study suggests that the monolayer hBN is a promising class of underlying seed layers to enable dendrite- and corrosion-free, horizontal Li electrodeposition for sustainable Li-metal anodes in next-generation batteries.

4.
Nanomicro Lett ; 15(1): 179, 2023 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-37439871

RESUMEN

Despite the enormous interest in inorganic/polymer composite solid-state electrolytes (CSEs) for solid-state batteries (SSBs), the underlying ion transport phenomena in CSEs have not yet been elucidated. Here, we address this issue by formulating a mechanistic understanding of bi-percolating ion channels formation and ion conduction across inorganic-polymer electrolyte interfaces in CSEs. A model CSE is composed of argyrodite-type Li6PS5Cl (LPSCl) and gel polymer electrolyte (GPE, including Li+-glyme complex as an ion-conducting medium). The percolation threshold of the LPSCl phase in the CSE strongly depends on the elasticity of the GPE phase. Additionally, manipulating the solvation/desolvation behavior of the Li+-glyme complex in the GPE facilitates ion conduction across the LPSCl-GPE interface. The resulting scalable CSE (area = 8 × 6 (cm × cm), thickness ~ 40 µm) can be assembled with a high-mass-loading LiNi0.7Co0.15Mn0.15O2 cathode (areal-mass-loading = 39 mg cm-2) and a graphite anode (negative (N)/positive (P) capacity ratio = 1.1) in order to fabricate an SSB full cell with bi-cell configuration. Under this constrained cell condition, the SSB full cell exhibits high volumetric energy density (480 Wh Lcell-1) and stable cyclability at 25 °C, far exceeding the values reported by previous CSE-based SSBs.

5.
Chem Sci ; 11(43): 11692-11698, 2020 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-34123199

RESUMEN

Despite their potential as promising alternatives to current state-of-the-art lithium-ion batteries, aqueous rechargeable Zn-ion batteries are still far away from practical applications. Here, we present a new class of single-ion conducting electrolytes based on a zinc sulfonated covalent organic framework (TpPa-SO3Zn0.5) to address this challenging issue. TpPa-SO3Zn0.5 is synthesised to exhibit single Zn2+ conduction behaviour via its delocalised sulfonates that are covalently tethered to directional pores and achieve structural robustness by its ß-ketoenamine linkages. Driven by these structural and physicochemical features, TpPa-SO3Zn0.5 improves the redox reliability of the Zn metal anode and acts as an ionomeric buffer layer for stabilising the MnO2 cathode. Such improvements in the TpPa-SO3Zn0.5-electrode interfaces, along with the ion transport phenomena, enable aqueous Zn-MnO2 batteries to exhibit long-term cyclability, demonstrating the viability of COF-mediated electrolytes for Zn-ion batteries.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA