Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
R Soc Open Sci ; 8(3): 201275, 2021 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-33959314

RESUMEN

Soil samples from several European countries were scanned using medical computer tomography (CT) device and are now available as CT images. The analysis of these samples was carried out using deep learning methods. For this purpose, a VGG16 network was trained with the CT images (X). For the annotation (y) a new method for automated annotation, 'surrogate' learning, was introduced. The generated neural networks (NNs) were subjected to a detailed analysis. Among other things, transfer learning was used to check whether the NN can also be trained to other y-values. Visually, the NN was verified using a gradient-based class activation mapping (grad-CAM) algorithm. These analyses showed that the NN was able to generalize, i.e. to capture the spatial structure of the soil sample. Possible applications of the models are discussed.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA