RESUMEN
BACKGROUND: H56:IC31 is a candidate vaccine against tuberculosis (TB) with the potential to reduce TB recurrence rate. It is thus important for future clinical trials to demonstrate safety and immunogenicity of H56:IC31 in individuals treated for TB. METHODS: 22 adults confirmed to be Mtb negative (by 2 GeneXpert tests or 2 sputum cultures) after four-five months of TB treatment, and not more than 28 days after completion of TB treatment, were randomized to receive two doses of H56:IC31 (5 mg H56:500 nmol IC31; N=16) or placebo (N=6) 56 days apart. Participants were followed for 420 days for safety and immunogenicity. RESULTS: H56:IC31 vaccination was associated with an acceptable safety profile, consisting mostly of mild self-limited injection site reactions. No serious adverse events, and no vaccine-related severe adverse events, were reported. H56:IC31 induced a CD4+ T-cell response for Ag85B and ESAT-6, with ESAT-6 being immunodominant, which persisted through six months after the last vaccination. There was some evidence of CD8+ T-cell responses for both Ag85B and ESAT-6, but to a lesser extent than CD4+ responses. CONCLUSIONS: H56:IC31 was associated with an acceptable safety profile, and induced a predominant CD4+ T-cell response, in adults recently treated for drug-susceptible, uncomplicated pulmonary TB. TRIAL REGISTRATION: ClinicalTrials.gov, NCT02375698.
RESUMEN
BACKGROUND: Recent Mycobacterium tuberculosis infection confers a predisposition to the development of tuberculosis disease, the leading killer among global infectious diseases. H4:IC31, a candidate subunit vaccine, has shown protection against tuberculosis disease in preclinical models, and observational studies have indicated that primary bacille Calmette-Guérin (BCG) vaccination may offer partial protection against infection. METHODS: In this phase 2 trial, we randomly assigned 990 adolescents in a high-risk setting who had undergone neonatal BCG vaccination to receive the H4:IC31 vaccine, BCG revaccination, or placebo. All the participants had negative results on testing for M. tuberculosis infection on the QuantiFERON-TB Gold In-tube assay (QFT) and for the human immunodeficiency virus. The primary outcomes were safety and acquisition of M. tuberculosis infection, as defined by initial conversion on QFT that was performed every 6 months during a 2-year period. Secondary outcomes were immunogenicity and sustained QFT conversion to a positive test without reversion to negative status at 3 months and 6 months after conversion. Estimates of vaccine efficacy are based on hazard ratios from Cox regression models and compare each vaccine with placebo. RESULTS: Both the BCG and H4:IC31 vaccines were immunogenic. QFT conversion occurred in 44 of 308 participants (14.3%) in the H4:IC31 group and in 41 of 312 participants (13.1%) in the BCG group, as compared with 49 of 310 participants (15.8%) in the placebo group; the rate of sustained conversion was 8.1% in the H4:IC31 group and 6.7% in the BCG group, as compared with 11.6% in the placebo group. Neither the H4:IC31 vaccine nor the BCG vaccine prevented initial QFT conversion, with efficacy point estimates of 9.4% (P=0.63) and 20.1% (P=0.29), respectively. However, the BCG vaccine reduced the rate of sustained QFT conversion, with an efficacy of 45.4% (P=0.03); the efficacy of the H4:IC31 vaccine was 30.5% (P=0.16). There were no clinically significant between-group differences in the rates of serious adverse events, although mild-to-moderate injection-site reactions were more common with BCG revaccination. CONCLUSIONS: In this trial, the rate of sustained QFT conversion, which may reflect sustained M. tuberculosis infection, was reduced by vaccination in a high-transmission setting. This finding may inform clinical development of new vaccine candidates. (Funded by Aeras and others; C-040-404 ClinicalTrials.gov number, NCT02075203 .).
Asunto(s)
Vacuna BCG , Inmunización Secundaria , Mycobacterium tuberculosis/inmunología , Seroconversión , Vacunas contra la Tuberculosis , Tuberculosis/prevención & control , Adolescente , Anticuerpos Antibacterianos/sangre , Vacuna BCG/efectos adversos , Vacuna BCG/inmunología , Niño , Femenino , Humanos , Masculino , Modelos de Riesgos Proporcionales , Tuberculosis/diagnóstico , Tuberculosis/transmisión , Vacunas contra la Tuberculosis/efectos adversos , Vacunas contra la Tuberculosis/inmunologíaRESUMEN
RATIONALE: Global tuberculosis (TB) control requires effective vaccines in TB-endemic countries, where most adults are infected with Mycobacterium tuberculosis (M.tb). OBJECTIVES: We sought to define optimal dose and schedule of H56:IC31, an experimental TB vaccine comprising Ag85B, ESAT-6, and Rv2660c, for M.tb-infected and M.tb-uninfected adults. METHODS: We enrolled 98 healthy, HIV-uninfected, bacillus Calmette-Guérin-vaccinated, South African adults. M.tb infection was defined by QuantiFERON-TB (QFT) assay. QFT-negative participants received two vaccinations of different concentrations of H56 in 500 nmol of IC31 to enable dose selection for further vaccine development. Subsequently, QFT-positive and QFT-negative participants were randomized to receive two or three vaccinations to compare potential schedules. Participants were followed for safety and immunogenicity for 292 days. MEASUREMENTS AND MAIN RESULTS: H56:IC31 showed acceptable reactogenicity profiles irrespective of dose, number of vaccinations, or M.tb infection. No vaccine-related severe or serious adverse events were observed. The three H56 concentrations tested induced equivalent frequencies and functional profiles of antigen-specific CD4 T cells. ESAT-6 was only immunogenic in QFT-negative participants who received three vaccinations. CONCLUSIONS: Two or three H56:IC31 vaccinations at the lowest dose induced durable antigen-specific CD4 T-cell responses with acceptable safety and tolerability profiles in M.tb-infected and M.tb-uninfected adults. Additional studies should validate applicability of vaccine doses and regimens to both QFT-positive and QFT-negative individuals. Clinical trial registered with www.clinicaltrials.gov (NCT01865487).
Asunto(s)
Vacunas contra la Tuberculosis/uso terapéutico , Tuberculosis/prevención & control , Aciltransferasas/inmunología , Aciltransferasas/uso terapéutico , Adolescente , Adulto , Antígenos Bacterianos/inmunología , Antígenos Bacterianos/uso terapéutico , Proteínas Bacterianas/inmunología , Proteínas Bacterianas/uso terapéutico , Relación Dosis-Respuesta a Droga , Método Doble Ciego , Combinación de Medicamentos , Femenino , Humanos , Masculino , Persona de Mediana Edad , Oligodesoxirribonucleótidos/inmunología , Oligodesoxirribonucleótidos/uso terapéutico , Oligopéptidos/inmunología , Oligopéptidos/uso terapéutico , Sudáfrica , Resultado del Tratamiento , Tuberculosis/inmunología , Vacunas contra la Tuberculosis/inmunología , Adulto JovenRESUMEN
The Coalition for Epidemic Preparedness Innovations (CEPI) has developed a robust CMC (Chemistry, Manufacturing, and Controls) Framework to enhance the likelihood of successful vaccine development. This Framework serves as a comprehensive guide, aiding developers in building effective strategies to overcome the challenges posed by the different phases of vaccine development, including the ones often referred to as the "valleys of death". The Framework lists stage-appropriate deliverables, categorized and refined, spanning five key areas: manufacturing process, formulation and stability, analytics, supply chain, and compliance. By emphasizing the critical aspects of CMC development, CEPI's objective is to expedite the progression of vaccine candidates from research to deployment, reducing delays, mitigating risks, and optimizing the overall development process, all while upholding uncompromising quality standards, ultimately increasing the probability of success.
Asunto(s)
Desarrollo de Vacunas , Humanos , Vacunas , Tecnología Farmacéutica/métodos , Tecnología Farmacéutica/normas , Química Farmacéutica/métodos , Química Farmacéutica/normas , Desarrollo de Medicamentos/métodosRESUMEN
We investigated the potential of inducing additional T-cell immunity during chronic HIV-1 infection directed to subdominant HIV-1 epitopes from common HLA-supertypes. Ten treatment-naïve HIV-1-infected individuals were immunized with peptides in the adjuvant CAF01. One individual received placebo. T-cell immunogenicity was examined longitudinally by a flow cytometry (CD107a, IFNγ, TNFα, IL-2 and/or MIP1ß expression) as well as IFNγ ELISPOT. Safety was evaluated by clinical follow up combined with monitoring of biochemistry, hematology, CD4 T-cell counts and viral load. New CD4 and CD8 T-cell responses specific for one or more vaccine epitopes were induced in 10/10 vaccinees. The responses were dominated by CD107a and MIP1ß expression. There were no significant changes in HIV-1 viral load or CD4 T-cell counts. Our study demonstrates that the peptide/CAF01 vaccine is safe and that it is possible to generate new HIV-1 T-cell responses to defined epitopes in treatment-naïve HIV-1-infected individuals.
Asunto(s)
Adyuvantes Inmunológicos/uso terapéutico , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD8-positivos/inmunología , Epítopos de Linfocito T/uso terapéutico , Infecciones por VIH/inmunología , Infecciones por VIH/terapia , Epítopos Inmunodominantes/uso terapéutico , Péptidos/uso terapéutico , Adyuvantes Inmunológicos/administración & dosificación , Adolescente , Adulto , Linfocitos T CD4-Positivos/metabolismo , Linfocitos T CD4-Positivos/virología , Linfocitos T CD8-positivos/metabolismo , Linfocitos T CD8-positivos/virología , Epítopos de Linfocito T/administración & dosificación , Epítopos de Linfocito T/inmunología , Femenino , Infecciones por VIH/prevención & control , Antígenos HLA-A/administración & dosificación , Antígenos HLA-A/genética , Antígenos HLA-B/administración & dosificación , Antígenos HLA-B/genética , Antígenos HLA-C/administración & dosificación , Antígenos HLA-C/genética , Humanos , Epítopos Inmunodominantes/administración & dosificación , Epítopos Inmunodominantes/inmunología , Masculino , Persona de Mediana Edad , Péptidos/administración & dosificación , Péptidos/inmunología , Método Simple Ciego , Adulto JovenRESUMEN
Reference materials are critical in assay development for calibrating and assessing their suitability. The devasting nature of the COVID-19 pandemic and subsequent proliferation of vaccine platforms and technologies has meant that there is even a greater need for standards for immunoassay development, which are critical to assess and compare vaccines' responses. Equally important are the standards needed to control the vaccine manufacturing processes. Standardized vaccine characterization assays throughout process development are essential for a successful Chemistry, Manufacturing and Controls (CMC) strategy. In this perspective paper, we advocate for reference material incorporation into assays and their calibration to International Standards from preclinical vaccine development through control testing and provide insight into why this is necessary. We also provide information on the availability of WHO international antibody standards for CEPI-priority pathogens.
RESUMEN
Tuberculosis (TB) remains a major killer worldwide. The only available TB-vaccine, the nearly century-old Mycobacterium bovis BCG, has had only a limited effect on TB incidence. Therefore, developing new TB vaccines is a key priority, and the first new generation TB vaccines are now being tested in clinical trials. Here we describe the development and first testing in humans of a novel, wholly synthetic TB subunit vaccine. This vaccine has proven safe and highly immunogenic in all species in which it was tested, including mice, guinea pigs, non-human primates and humans. Most encouragingly, following vaccination in humans, strong IFN-γ responses persisted through at least 2½ years of follow-up, indicating induction of a substantial memory response by this new TB vaccine. These findings encourage further preclinical and clinical studies with TB subunit vaccines and cellular immunity-stimulating new adjuvants.
Asunto(s)
Mycobacterium tuberculosis/inmunología , Células TH1/inmunología , Vacunas contra la Tuberculosis/efectos adversos , Vacunas contra la Tuberculosis/inmunología , Animales , Cobayas , Humanos , Interferón gamma/metabolismo , Ratones , Factores de Tiempo , Vacunas contra la Tuberculosis/química , Vacunas de Subunidad/efectos adversos , Vacunas de Subunidad/química , Vacunas de Subunidad/inmunología , Vacunas Sintéticas/efectos adversos , Vacunas Sintéticas/química , Vacunas Sintéticas/inmunologíaRESUMEN
BACKGROUND: Tuberculosis (TB) remains the leading cause of infectious disease-related death. Recently, a trial of BCG revaccination and vaccination with H4:IC31, a recombinant protein vaccine, in South African adolescents (Aeras C-040-404) showed efficacy in preventing sustained QuantiFERON (QFT) conversion, a proxy for Mycobacterium tuberculosis (M.tb) infection. A phase 1b trial of 84 South African adolescents was conducted, concurrent with Aeras C-040-404, to assess the safety and immunogenicity of H4:IC31, H56:IC31 and BCG revaccination, and to identify and optimize immune assays for identification of candidate correlates of protection in efficacy trials. METHODS: Two doses of H4:IC31 and H56:IC31 vaccines were administered intramuscularly (IM) 56 days apart, and a single dose of BCG (2-8 × 105 CFU) was administered intradermally (ID). T-cell and antibody responses were measured using intracellular cytokine staining and binding antibody assays, respectively. Binding antibodies and CD4+/CD8+ T-cell responses to H4- and H56-matched antigens were measured in samples from all participants. The study was designed to characterize safety and immunogenicity and was not powered for group comparisons. (Clinicaltrials.gov NCT02378207). FINDINGS: In total, 481 adolescents (mean age 13·9 years) were screened; 84 were enrolled (54% female). The vaccines were generally safe and well-tolerated, with no reported severe adverse events related to the study vaccines. H4:IC31 and H56:IC31 elicited CD4+ T cells recognizing vaccine-matched antigens and H4- and H56-specific IgG binding antibodies. The highest vaccine-induced CD4+ T-cell response rates were for those recognizing Ag85B in the H4:IC31 and H56:IC31 vaccinated groups. BCG revaccination elicited robust, polyfunctional BCG-specific CD4+ T cells, with no increase in H4- or H56-specific IgG binding antibodies. There were few antigen-specific CD8+ T-cell responses detected in any group. INTERPRETATION: BCG revaccination administered as a single dose ID and both H4:IC31 and H56:IC31 administered as 2 doses IM had acceptable safety profiles in healthy, QFT-negative, previously BCG-vaccinated adolescents. Characterization of the assays and the immunogenicity of these vaccines may help to identify valuable markers of protection for upcoming immune correlates analyses of C-040-404 and future TB vaccine efficacy trials. FUNDING: NIAID and Aeras.
RESUMEN
BACKGROUND: Chlamydia is the most common sexually transmitted bacterial infection worldwide. National screening programmes and antibiotic treatment have failed to decrease incidence, and to date no vaccines against genital chlamydia have been tested in clinical trials. We aimed to assess the safety and immunogenicity, in humans, of a novel chlamydia vaccine based on a recombinant protein subunit (CTH522) in a prime-boost immunisation schedule. METHODS: This phase 1, first-in-human, double-blind, parallel, randomised, placebo-controlled trial was done at Hammersmith Hospital in London, UK, in healthy women aged 19-45 years. Participants were randomly assigned (3:3:1) to three groups: CTH522 adjuvanted with CAF01 liposomes (CTH522:CAF01), CTH522 adjuvanted with aluminium hydroxide (CTH522:AH), or placebo (saline). Participants received three intramuscular injections of 85 µg vaccine (with adjuvant) or placebo to the deltoid region of the arm at 0, 1, and 4 months, followed by two intranasal administrations of 30 µg unadjuvanted vaccine or placebo (one in each nostril) at months 4·5 and 5·0. The primary outcome was safety and the secondary outcome was humoral immunogenicity (anti-CTH522 IgG seroconversion). This study is registered with Clinicaltrials.gov, number NCT02787109. FINDINGS: Between Aug 15, 2016, and Feb 13, 2017, 35 women were randomly assigned (15 to CTH522:CAF01, 15 to CTH522:AH, and five to placebo). 32 (91%) received all five vaccinations and all participants were included in the intention-to-treat analyses. No related serious adverse reactions were reported, and the most frequent adverse events were mild local injection-site reactions, which were reported in all (15 [100%] of 15) participants in the two vaccine groups and in three (60%) of five participants in the placebo group (p=0·0526 for both comparisons). Intranasal vaccination was not associated with a higher frequency of related local reactions (reported in seven [47%] of 15 participants in the active treatment groups vs three [60%] of five in the placebo group; p=1·000). Both CTH522:CAF01 and CTH522:AH induced anti-CTH522 IgG seroconversion in 15 (100%) of 15 participants after five immunisations, whereas no participants in the placebo group seroconverted. CTH522:CAF01 showed accelerated seroconversion, increased IgG titres, an enhanced mucosal antibody profile, and a more consistent cell-mediated immune response profile compared with CTH522:AH. INTERPRETATION: CTH522 adjuvanted with either CAF01 or aluminium hydroxide appears to be safe and well tolerated. Both vaccines were immunogenic, although CTH522:CAF01 had a better immunogenicity profile, holding promise for further clinical development. FUNDING: European Commission and The Innovation Fund Denmark.
Asunto(s)
Adyuvantes Inmunológicos/administración & dosificación , Hidróxido de Aluminio/administración & dosificación , Vacunas Bacterianas/efectos adversos , Vacunas Bacterianas/inmunología , Infecciones por Chlamydia/prevención & control , Chlamydia/inmunología , Inmunogenicidad Vacunal , Liposomas/administración & dosificación , Vacunación/métodos , Administración Intranasal , Adulto , Vacunas Bacterianas/administración & dosificación , Vacunas Bacterianas/uso terapéutico , Infecciones por Chlamydia/microbiología , Método Doble Ciego , Femenino , Voluntarios Sanos , Humanos , Esquemas de Inmunización , Inyecciones Intramusculares , Londres , Persona de Mediana Edad , Resultado del Tratamiento , Adulto JovenRESUMEN
BACKGROUND: H1/IC31® is a tuberculosis (TB) subunit vaccine candidate consisting of the fusion protein of Ag85B and ESAT-6 (H1) formulated with the IC31® adjuvant. Previous trials have reported on the H1/IC31® vaccine in M. tuberculosis (Mtb)-naïve, BCG-vaccinated and previously Mtb-infected individuals. In this trial, conducted between December 2008 and April 2010, the safety and immunogenicity of H1/IC31® was assessed in participants living in Ethiopia - a highly TB-endemic area. METHODS: Healthy male participants aged 18-25 years were recruited into four groups. Participants in group 1 (N = 12) and group 2 (N = 12) were Tuberculin Skin Test (TST) negative and QuantiFERON-TB Gold in-tube test (QFT) negative (Mtb-naïve groups), participants in group 3 (N = 3) were TST positive and QFT negative (BCG group), and participants in group 4 (N = 12) were both TST and QFT positive (Mtb-infected group). H1 vaccine alone (group 1) or H1 formulated with the adjuvant IC31® (groups 2, 3 and 4) was administered intramuscularly on day 0 and day 56. Safety and immunogenicity parameters were evaluated for up to 32 weeks after day 0. RESULTS: The H1/IC31®vaccine was safe and generally well tolerated. There was little difference among the four groups, with a tendency towards a higher incidence of adverse events in Mtb-infected compared to Mtb-naïve participants. Two serious adverse events were reported in the Mtb-infected group where a relationship to the vaccine could not be excluded. In both cases the participants recovered without sequelae within 72 h. Immunogenicity assays, evaluated in the 29 participants who received both vaccinations, showed a stronger response to TB antigens in the Mtb-naïve group vaccinated with the adjuvant. CONCLUSION: The trial confirmed the need for an adjuvant for the vaccine to be immunogenic and highlighted the importance of early phase testing of a novel TB vaccine candidate in TB-endemic areas. TRIAL REGISTRATION: ClinicalTrials.gov, ID: NCT01049282. Retrospectively registered on 14 January 2010.
Asunto(s)
Vacunas contra la Tuberculosis/inmunología , Adyuvantes Inmunológicos/farmacología , Adulto , Anticuerpos Antibacterianos/sangre , Humanos , Inmunoglobulina G/sangre , Masculino , Vacunas contra la Tuberculosis/efectos adversos , Vacunas de Subunidad/inmunologíaRESUMEN
BACKGROUND: There is a demand of affordable IPV in the World. Statens Serum Institut (SSI) has developed three reduced dose IPV formulations adsorbed to aluminium hydroxide; 1/3 IPV-Al, 1/5 IPV-Al and 1/10 IPV-Al SSI, and now report the results of the first investigations in humans. METHODS: 240 Danish adolescents, aged 10-15years, and childhood vaccinated with IPV were booster vaccinated with 1/3 IPV-Al, 1/5 IPV-Al, 1/10 IPV-Al or IPV Vaccine SSI. The booster effects (GMTRs) of the three IPV-Al SSI were compared to IPV Vaccine SSI, and evaluated for non-inferiority. IMMUNOGENICITY RESULTS: The pre-vaccination GMTs were similar across the groups; 926 (type 1), 969 (type 2) and 846 (type 3) in the total trial population. The GMTRs by poliovirus type and IPV formulation were: Type 1: 17.0 (1/3 IPV-Al), 13.0 (1/5 IPV-Al), 7.1 (1/10 IPV-Al) and 42.2 (IPV Vaccine SSI). Type 2: 12.5 (1/3 IPV-Al), 13.1 (1/5 IPV-Al), 7.6 (1/10 IPV-Al) and 47.8 (IPV Vaccine SSI). Type 3: 14.5 (1/3 IPV-Al), 16.2 (1/5 IPV-Al), 8.9 (1/10 IPV-Al) and 62.4 (IPV Vaccine SSI) Thus, the three IPV-Al formulations were highly immunogenic, but inferior to IPV Vaccine SSI, in this booster vaccination trial. SAFETY RESULTS: No SAE and no AE of severe intensity occurred. 59.2% of the subjects reported at least one AE. Injection site pain was the most frequent AE in all groups; from 24.6% to 43.3%. Injection site redness and swelling frequencies were<5% in most and<10% in all groups. The most frequent systemic AEs were fatigue (from 8.2% to 15.0%) and headache (from 15.0% to 28.3%). Most AEs were of mild intensity. In conclusion, the three IPV-Al SSI were safe in adolescents and the booster effects were satisfactory. ClinicalTrials.gov registration number: NCT02280447.
Asunto(s)
Inmunización Secundaria/métodos , Poliomielitis/prevención & control , Vacuna Antipolio de Virus Inactivados/efectos adversos , Vacuna Antipolio de Virus Inactivados/inmunología , Adyuvantes Inmunológicos/administración & dosificación , Adolescente , Hidróxido de Aluminio/administración & dosificación , Anticuerpos Antivirales/sangre , Niño , Preescolar , Dinamarca , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos/epidemiología , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos/patología , Femenino , Humanos , Lactante , Masculino , Vacuna Antipolio de Virus Inactivados/administración & dosificaciónRESUMEN
BACKGROUND: Cost and supply constraints are key challenges in the use of inactivated polio vaccine (IPV). Dose reduction through adsorption to aluminium hydroxide (Al) is a promising option, and establishing its effectiveness in the target population is a crucial milestone in developing IPV-Al. The aim of this clinical trial was to show the non-inferiority of three IPV-Al vaccines to standard IPV. METHODS: In this phase 2, non-inferiority, observer-blinded, randomised, controlled, single-centre trial in the Dominican Republic, healthy infants aged 6 weeks, not previously polio vaccinated, were allocated after computer-generated randomisation by block-size of four, to receive one of four IPV formulations (three-times reduced dose [1/3 IPV-Al], five-times reduced dose [1/5 IPV-Al], ten-times reduced dose [1/10 IPV-Al], or IPV) intramuscularly in the thigh at 6, 10, and 14 weeks of age. The primary outcome was seroconversion for poliovirus types 1, 2, and 3 with titres more than or equal to four-fold higher than the estimated maternal antibody titre and more than or equal to 8 after three vaccinations. Non-inferiority was concluded if the lower two-sided 90% CI of the seroconversion rate difference between IPV-Al and IPV was greater than -10%. The safety analyses were based on the safety analysis set (randomly assigned participants who received at least one trial vaccination) and the immunogenicity analyses were based on the per-protocol population. This study is registered with ClinicalTrials.gov registration, number NCT02347423. FINDINGS: Between Feb 2, 2015, and Sept 26, 2015, we recruited 824 infants. The per-protocol population included 820 infants; 205 were randomly assigned to receive 1/3 IPV-Al, 205 to receive 1/5 IPV-Al, 204 to receive 1/10 IPV-Al, and 206 to receive IPV. The proportion of individuals meeting the primary endpoint of seroconversion for poliovirus types 1, 2, and 3 was already high for the three IPV-Al vaccines after two vaccinations, but was higher after three vaccinations (ie, after completion of the expanded programme of immunisation schedule): 1/3 IPV-Al 98·5% (n=202, type 1), 97·6% (n=200; type 2), and 99·5% (n=204, type 3); 1/5 IPV-Al: 99·5% (n=204, type 1), 96·1% (n=197, type 2), and 98·5% (n=202, type 3); and 1/10 IPV-Al: 98·5% (n=201, type 1), 94·6% (n=193, type 2), and 99·5% (n=203, type 3). All three IPV-Al were non-inferior to IPV, with absolute differences in percentage seroconversion for each poliovirus type being greater than -10% (1/3 IPV-Al type 1, -1·46 [-3·60 to 0·10], type 2, -0·98 [-3·62 to 1·49], and type 3, -0·49 [-2·16 to 0·86]; 1/5 IPV-Al type 1, -0·49 [-2·16 to 0·86], type 2, -2·45 [-5·47 to 0·27], and type 3, -1·46 [-3·60 to 0·10]; and 1/10 IPV-Al type 1, -1·47 [-3·62 to 0·10], type 2, -3·94 [-7·28 to -0·97], and type 3, -0·49 [-2·17 to 0·86]). Three serious adverse events occurred that were unrelated to the vaccine. INTERPRETATION: The lowest dose (1/10 IPV-Al) of the vaccine performed well both after two and three doses. Based on these results, this new vaccine is under investigation in phase 3 trials. FUNDING: Bill & Melinda Gates Foundation.
Asunto(s)
Adyuvantes Inmunológicos/administración & dosificación , Hidróxido de Aluminio , Esquemas de Inmunización , Inmunogenicidad Vacunal , Poliomielitis/prevención & control , Vacuna Antipolio de Virus Inactivados/administración & dosificación , Vacuna Antipolio Oral/administración & dosificación , Anticuerpos Antivirales/sangre , Anticuerpos Antivirales/inmunología , República Dominicana , Femenino , Humanos , Lactante , Masculino , Poliovirus/efectos de los fármacos , Poliovirus/inmunología , Vacunación/métodos , Esparcimiento de VirusRESUMEN
BACKGROUND: Control of the tuberculosis epidemic requires a novel vaccine that is effective in preventing tuberculosis in adolescents, a key target population for vaccination against TB. METHODS: Healthy adolescents, stratified by M. tuberculosis-infection status, were enrolled into this observer-blinded phase II clinical trial of the protein-subunit vaccine candidate, H1:IC31, comprising a fusion protein (H1) of Ag85B and ESAT-6, formulated with the IC31 adjuvant. Local and systemic adverse events and induced T cell responses were measured after one or two administrations of either 15µg or 50µg of the H1 protein. RESULTS: Two hundred and forty participants were recruited and followed up for 224days. No notable safety events were observed regardless of H1 dose or vaccination schedule. H1:IC31 vaccination induced antigen-specific CD4 T cells, co-expressing IFN-γ, TNF-α and/or IL-2. H1:IC31 vaccination of M.tb-uninfected individuals preferentially drove the emergence of Ag85B and ESAT-6 specific TNF-α+IL-2+CD4 T cells, while H1:IC31 vaccination of M.tb-infected individuals resulted in the expansion of Ag85B-specific but not ESAT-6-specific TNF-α+IL-2+CD4 T cells. CONCLUSIONS: H1:IC31 was safe and immunogenic in uninfected and M.tb-infected adolescents. Two administrations of the 15µg H1:IC31 dose induced the greatest magnitude immune response, and was considered optimal (South African National Clinical Trials Register, DoH-27-0612-3947; Pan African Clinical Trial Registry, PACTR201403000464306).
Asunto(s)
Aciltransferasas/inmunología , Adyuvantes Inmunológicos/efectos adversos , Antígenos Bacterianos/inmunología , Proteínas Bacterianas/inmunología , Linfocitos T CD4-Positivos/inmunología , Oligodesoxirribonucleótidos/efectos adversos , Oligopéptidos/efectos adversos , Vacunas contra la Tuberculosis/efectos adversos , Vacunas contra la Tuberculosis/inmunología , Aciltransferasas/genética , Adyuvantes Inmunológicos/administración & dosificación , Adolescente , Antígenos Bacterianos/genética , Proteínas Bacterianas/genética , Niño , Combinación de Medicamentos , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos/epidemiología , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos/patología , Femenino , Voluntarios Sanos , Humanos , Interleucina-2/metabolismo , Masculino , Oligodesoxirribonucleótidos/administración & dosificación , Oligopéptidos/administración & dosificación , Método Simple Ciego , Vacunas contra la Tuberculosis/administración & dosificación , Vacunas contra la Tuberculosis/genética , Factor de Necrosis Tumoral alfa/metabolismo , Vacunas Sintéticas/administración & dosificación , Vacunas Sintéticas/genética , Vacunas Sintéticas/inmunologíaRESUMEN
BACKGROUND: Novel vaccine strategies are required to provide protective immunity in tuberculosis (TB) and prevent development of active disease. We investigated the safety and immunogenicity of a novel TB vaccine candidate, H4:IC31 (AERAS-404) that is composed of a fusion protein of M. tuberculosis antigens Ag85B and TB10.4 combined with an IC31® adjuvant. METHODS: BCG-vaccinated healthy subjects were immunized with various antigen (5, 15, 50, 150µg) and adjuvant (0, 100, 500nmol) doses of the H4:IC31 vaccine (n=106) or placebo (n=18) in two randomized, double-blind, placebo-controlled phase I studies conducted in a low TB endemic setting in Sweden and Finland. The subjects were followed for adverse events and CD4+ T cell responses. RESULTS: H4:IC31 vaccination was well tolerated with a safety profile consisting of mostly mild to moderate self-limited injection site pain, myalgia, arthralgia, fever and post-vaccination inflammatory reaction at the screening tuberculin skin test injection site. The H4:IC31 vaccine elicited antigen-specific CD4+ T cell proliferation and cytokine production that persisted 18weeks after the last vaccination. CD4+ T cell expansion, IFN-γ production and multifunctional CD4+ Th1 responses were most prominent after two doses of H4:IC31 containing 5, 15, or 50µg of H4 in combination with the 500nmol IC31 adjuvant dose. CONCLUSIONS: The novel TB vaccine candidate, H4:IC31, demonstrated an acceptable safety profile and was immunogenic, capable of triggering multifunctional CD4+ T cell responses in previously BCG-vaccinated healthy individuals. These dose-escalation trials provided evidence that the optimal antigen-adjuvant dose combinations are 5, 15, or 50µg of H4 and 500nmol of IC31. TRIAL REGISTRATION: ClinicalTrials.gov, NCT02066428 and NCT02074956.
Asunto(s)
Vacunas contra la Tuberculosis/efectos adversos , Vacunas contra la Tuberculosis/inmunología , Tuberculosis/prevención & control , Aciltransferasas/administración & dosificación , Aciltransferasas/efectos adversos , Aciltransferasas/inmunología , Adulto , Antígenos Bacterianos/administración & dosificación , Antígenos Bacterianos/efectos adversos , Antígenos Bacterianos/inmunología , Proteínas Bacterianas/administración & dosificación , Proteínas Bacterianas/efectos adversos , Proteínas Bacterianas/inmunología , Linfocitos T CD4-Positivos/inmunología , Método Doble Ciego , Combinación de Medicamentos , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos/epidemiología , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos/patología , Finlandia , Voluntarios Sanos , Humanos , Oligodesoxirribonucleótidos/administración & dosificación , Oligodesoxirribonucleótidos/efectos adversos , Oligopéptidos/administración & dosificación , Oligopéptidos/efectos adversos , Placebos/administración & dosificación , Suecia , Resultado del Tratamiento , Vacunas contra la Tuberculosis/administración & dosificaciónRESUMEN
CD4 T cells are critical for protective immunity against Mycobacterium tuberculosis (Mtb), the cause of tuberculosis (TB). Yet to date, TB vaccine candidates that boost antigen-specific CD4 T cells have conferred little or no protection. Here we examined CD4 T cell responses to two leading TB vaccine antigens, ESAT-6 and Ag85B, in Mtb-infected mice and in vaccinated humans with and without underlying Mtb infection. In both species, Mtb infection drove ESAT-6-specific T cells to be more differentiated than Ag85B-specific T cells. The ability of each T cell population to control Mtb in the lungs of mice was restricted for opposite reasons: Ag85B-specific T cells were limited by reduced antigen expression during persistent infection, whereas ESAT-6-specific T cells became functionally exhausted due to chronic antigenic stimulation. Our findings suggest that different vaccination strategies will be required to optimize protection mediated by T cells recognizing antigens expressed at distinct stages of Mtb infection.
Asunto(s)
Antígenos de Diferenciación de Linfocitos T/fisiología , Linfocitos T CD4-Positivos/inmunología , Activación de Linfocitos/inmunología , Tuberculosis/inmunología , Aciltransferasas/inmunología , Adolescente , Animales , Antígenos Bacterianos/inmunología , Proteínas Bacterianas/inmunología , Linfocitos T CD4-Positivos/efectos de los fármacos , Diferenciación Celular , Citocinas/sangre , Femenino , Humanos , Interferón gamma/inmunología , Pulmón/microbiología , Pulmón/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Mycobacterium tuberculosis/inmunología , Mycobacterium tuberculosis/patogenicidad , ARN Mensajero/biosíntesis , Sudáfrica , Tuberculosis/microbiología , Tuberculosis/prevención & control , Vacunas contra la Tuberculosis/inmunología , Vacunas contra la Tuberculosis/farmacología , VacunaciónRESUMEN
BACKGROUND: Targeted screening and treatment of Mycobacterium tuberculosis infection substantially reduces the risk of developing active tuberculosis. C-Tb (Statens Serum Institute, Copenhagen, Denmark) is a novel specific skin test based on ESAT-6 and CFP10 antigens. We investigated the safety and diagnostic potential of C-Tb compared with established tests in the contact-tracing setting. METHODS: Negative controls, close contacts, occasional contacts, and patients with active pulmonary tuberculosis were enrolled at 13 centres in Spain. We compared C-Tb with the QuantiFERON-TB Gold In-Tube ([QFT] Qiagen, Hilden, Germany) interferon γ release assay (IGRA) and the purified protein derivative (PPD) RT 23 tuberculin skin test ([TST] Statens Serum Institute). All participants older than 5 years were tested with QFT. Some participants in the negative control group received C-Tb without the TST to test for potential interactions between C-Tb and PPD RT 23. The rest were randomly assigned in blocks of ten and tested with both C-Tb and TST, with five in each block receiving injection of C-Tb in the right arm and the TST in the left arm and five vice versa. The primary and safety analyses were done in all participants randomly assigned to a group who received any test. This trial is registered with ClinicalTrials.gov, number NCT01631266, and with EudraCT, number 2011-005617-36. FINDINGS: From July 24, 2012, to Oct 2, 2014, 979 participants were enrolled, of whom 263 were negative controls, 299 were occasional contacts, 316 were close contacts, and 101 were patients with tuberculosis. 970 (99%) participants completed the trial. Induration sizes were similar for C-Tb and TST, but TST positivity was affected by BCG vaccination status. We found a strong positive trend towards C-Tb test positivity with increasing risk of infection, from 3% in negative controls to 16% in occasional contacts, to 43% in close contacts. C-Tb and QFT results were concordant in 785 (94%) of 834 participants aged 5 years and older, and results did not differ significantly between exposure groups. The safety profile of C-Tb was similar to that for the TST. INTERPRETATION: C-Tb delivered IGRA-like results in a field-friendly format. Being unaffected by BCG vaccination status, the C-Tb skin test might provide more accurate treatment guidance in settings where the TST is commonly used. FUNDING: Statens Serum Institut.
Asunto(s)
Ensayos de Liberación de Interferón gamma/métodos , Prueba de Tuberculina/métodos , Tuberculosis/diagnóstico , Adolescente , Adulto , Vacuna BCG/efectos adversos , Niño , Preescolar , Método Doble Ciego , Femenino , Humanos , Masculino , Mycobacterium tuberculosis/inmunología , España , Tuberculosis/prevención & control , Adulto JovenRESUMEN
Tuberculosis (TB) remains a global health problem, with vaccination being a necessary strategy for disease containment and elimination. A TB vaccine should be safe and immunogenic as well as efficacious in all affected populations, including HIV-infected individuals. We investigated the induction and maintenance of vaccine-induced memory CD4(+) T cells following vaccination with the subunit vaccine H1/IC31. H1/IC31 was inoculated twice on study days 0 and 56 among HIV-infected adults with CD4(+) lymphocyte counts of >350 cells/mm(3). Whole venous blood stimulation was conducted with the H1 protein, and memory CD4(+) T cells were analyzed using intracellular cytokine staining and polychromatic flow cytometry. We identified high responders, intermediate responders, and nonresponders based on detection of interleukin-2 (IL-2), tumor necrosis factor alpha (TNF-α), and gamma interferon (IFN-γ) expressing central (TCM) and effector memory CD4(+) T cells (TEM) 182 days after the first immunization. Amplicon-based transcript quantification using next-generation sequencing was performed to identify differentially expressed genes that correlated with vaccine-induced immune responses. Genes implicated in resolution of inflammation discriminated the responders from the nonresponders 3 days after the first inoculation. The volunteers with higher expression levels of genes involved in antiviral innate immunity at baseline showed impaired H1-specific TCM and TEM maintenance 6 months after vaccination. Our study showed that in HIV-infected volunteers, expression levels of genes involved in the antiviral innate immune response affected long-term maintenance of H1/IC31 vaccine-induced cellular immunity. (The clinical trial was registered in the Pan African Clinical Trials Registry [PACTR] with the identifier PACTR201105000289276.).
Asunto(s)
Linfocitos T CD4-Positivos/inmunología , Infecciones por VIH/inmunología , Tolerancia Inmunológica , Inmunidad Innata , Memoria Inmunológica , Vacunas contra la Tuberculosis/inmunología , Tuberculosis/prevención & control , Adulto , Citocinas/metabolismo , Femenino , Humanos , Masculino , Persona de Mediana Edad , Datos de Secuencia Molecular , Análisis de Secuencia de ADN , Tuberculosis/inmunología , Vacunas contra la Tuberculosis/administración & dosificación , Vacunas de Subunidad/administración & dosificación , Vacunas de Subunidad/inmunologíaRESUMEN
BACKGROUND: New, more effective vaccines to prevent tuberculosis (TB) disease are needed urgently. H4:IC31 is an investigational vaccine that contains a fusion protein of the immunodominant antigens TB10.4 and Ag85B, formulated in IC31 adjuvant. We assessed the safety and immunogenicity of H4:IC31 in South African adults from a TB endemic setting. METHODS: In this double blind, placebo controlled, phase I trial, Mycobacterium tuberculosis-uninfected, HIV-uninfected, healthy adults with a history of childhood BCG vaccination were randomly allocated to two intramuscular vaccinations with 5, 15, 50 or 150 µg H4 formulated in 500nmol IC31, two months apart. Vaccinees were followed for six months to assess safety; immunogenicity was measured by ELISpot and intracellular cytokine staining assays. RESULTS: Thirty-two participants received H4:IC31 and 8 received placebo. Injection site adverse events were common but mild; mild fatigue was the most common systemic adverse event. Frequencies of adverse events did not differ between dosage groups. Detectable antigen-specific CD4 T cell responses were induced by all doses of H4:IC31, but doses below 50 µg induced the highest frequencies of CD4 T cells, comprised predominantly of IFN-γ(+)TNF-α(+)IL-2(+) or TNF-α(+)IL-2(+) cells. These memory responses persisted up to the end of follow up, on study day 182. CONCLUSIONS: H4:IC31 demonstrated an acceptable safety profile and was immunogenic in South African adults. In this trial, the 15 µg dose appeared to induce the most optimal immune response.
Asunto(s)
Antígenos Bacterianos/inmunología , Linfocitos T CD4-Positivos/inmunología , Mycobacterium tuberculosis/inmunología , Oligodesoxirribonucleótidos/administración & dosificación , Oligopéptidos/administración & dosificación , Vacunas contra la Tuberculosis/inmunología , Adolescente , Adulto , Antígenos Bacterianos/administración & dosificación , Citocinas/análisis , Método Doble Ciego , Combinación de Medicamentos , Ensayo de Immunospot Ligado a Enzimas , Femenino , Humanos , Inyecciones Intramusculares , Masculino , Persona de Mediana Edad , Oligodesoxirribonucleótidos/efectos adversos , Oligopéptidos/efectos adversos , Placebos/administración & dosificación , Sudáfrica , Coloración y Etiquetado , Vacunas contra la Tuberculosis/administración & dosificación , Vacunas contra la Tuberculosis/efectos adversos , Adulto JovenRESUMEN
BACKGROUND: H56:IC31 is a candidate tuberculosis vaccine comprising a fusion protein of Ag85B, ESAT-6 and Rv2660c, formulated in IC31 adjuvant. This first-in-human, open label phase I trial assessed the safety and immunogenicity of H56:IC31 in healthy adults without or with Mycobacterium tuberculosis (M.tb) infection. METHODS: Low dose (15 µg H56 protein in 500 nmol IC31) or high dose (50 µg H56, 500 nmol IC31) vaccine was administered intramuscularly thrice, at 56-day intervals. Antigen-specific T cell responses were measured by intracellular cytokine staining and antibody responses by ELISA. RESULTS: One hundred and twenty-six subjects were screened and 25 enrolled and vaccinated. No serious adverse events were reported. Nine subjects (36%) presented with transient cardiovascular adverse events. The H56:IC31 vaccine induced antigen-specific IgG responses and Th1 cytokine-expressing CD4(+) T cells. M.tb-infected vaccinees had higher frequencies of H56-induced CD4(+) T cells than uninfected vaccinees. Low dose vaccination induced more polyfunctional (IFN-γ(+)TNF-α(+)IL-2(+)) and higher frequencies of H56-specific CD4(+) T cells compared with high dose vaccination. A striking increase in IFN-γ-only-expressing CD4(+) T cells, displaying a CD45RA(-)CCR7(-) effector memory phenotype, emerged after the second high-dose vaccination in M.tb-infected vaccinees. TNF-α(+)IL-2(+) H56-specific memory CD4(+) T cells were detected mostly after low-dose H56 vaccination in M.tb-infected vaccinees, and predominantly expressed a CD45RA(-)CCR7(+) central memory phenotype. Our results support further clinical testing of H56:IC31.
Asunto(s)
Anticuerpos Antibacterianos/sangre , Linfocitos T CD4-Positivos/inmunología , Mycobacterium tuberculosis/inmunología , Profilaxis Posexposición/métodos , Subgrupos de Linfocitos T/inmunología , Vacunas contra la Tuberculosis/inmunología , Tuberculosis/prevención & control , Aciltransferasas/administración & dosificación , Aciltransferasas/inmunología , Adolescente , Adulto , Antígenos Bacterianos/administración & dosificación , Antígenos Bacterianos/inmunología , Proteínas Bacterianas/administración & dosificación , Proteínas Bacterianas/inmunología , Citocinas/biosíntesis , Combinación de Medicamentos , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos/epidemiología , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos/patología , Femenino , Voluntarios Sanos , Humanos , Inyecciones Intramusculares , Masculino , Persona de Mediana Edad , Oligodesoxirribonucleótidos/administración & dosificación , Oligopéptidos/administración & dosificación , Resultado del Tratamiento , Vacunas contra la Tuberculosis/administración & dosificación , Vacunas contra la Tuberculosis/efectos adversos , Adulto JovenRESUMEN
BACKGROUND: Novel tuberculosis vaccines should be safe, immunogenic, and effective in various population groups, including HIV-infected individuals. In this phase II multi-centre, double-blind, placebo-controlled trial, the safety and immunogenicity of the novel H1/IC31 vaccine, a fusion protein of Ag85B-ESAT-6 (H1) formulated with the adjuvant IC31, was evaluated in HIV-infected adults. METHODS: HIV-infected adults with CD4+ T cell counts >350/mm3 and without evidence of active tuberculosis were enrolled and followed until day 182. H1/IC31 vaccine or placebo was randomly allocated in a 5:1 ratio. The vaccine was administered intramuscularly at day 0 and 56. Safety assessment was based on medical history, clinical examinations, and blood and urine testing. Immunogenicity was determined by a short-term whole blood intracellular cytokine staining assay. RESULTS: 47 of the 48 randomised participants completed both vaccinations. In total, 459 mild or moderate and 2 severe adverse events were reported. There were three serious adverse events in two vaccinees classified as not related to the investigational product. Local injection site reactions were more common in H1/IC31 versus placebo recipients (65.0% vs. 12.5%, p = 0.015). Solicited systemic and unsolicited adverse events were similar by study arm. The baseline CD4+ T cell count and HIV viral load were similar by study arm and remained constant over time. The H1/IC31 vaccine induced a persistent Th1-immune response with predominately TNF-α and IL-2 co-expressing CD4+ T cells, as well as polyfunctional IFN-γ, TNF-α and IL-2 expressing CD4+ T cells. CONCLUSION: H1/IC31 was well tolerated and safe in HIV-infected adults with a CD4+ Lymphocyte count greater than 350 cells/mm3. The vaccine did not have an effect on CD4+ T cell count or HIV-1 viral load. H1/IC31 induced a specific and durable Th1 immune response. TRIAL REGISTRATION: Pan African Clinical Trials Registry (PACTR) PACTR201105000289276.